

SCARA Teach Pendant Manual

Table of Content

1. Human machine interface 7
1.1 Hardware interface 7
1.2 Touch screen 10
2.Tab Operation and instructions 14
2.1 Main screen (Main) 14
2.2 Edit/run program for robot (Edit/Run) 16
2.3 Point information (Points) 22
2.4 Jog setting (JOG) 34
2.5 I/O monitoring (DI/O) 35
2.6 System information (Info) 36
2.7 System alarm information (Alarm Info) 37
2.8 Controller information (Controller Info) 38
2.9 System setting (Setting) 38
2.10 System setting - Setting controller IP 41
2. Alarm 42
3.1 Definitions of alarms 42
3.2 Index of alarm 43
3. Robot Language 65
4.1 Basic Instructions 65
4.2 Operation symbols 69
4.3 Operation commands 69
4.4 Basic Commands 71
4.5 Point Management Commands 71
4.6 Motion Parameters 75
4.7 Motion Control Commands 77
4.8 Coordinate System Commands 83
4.9 Process Control Commands 85
4.10 IO Operation Commands 88
4.11 Program Executing Commands 90
4.12 Application Function Commands 91

List of figures

Figure 1-1 Startup screen 8
Figure 1-2 Back of the teach pendant 9
Figure 1-3 SD Card slot for the teach pendant 9
Figure 1-4 Layout of touch screen 10
Figure 2-1 Main screen - Not logged in 14
Figure 2-2 Main screen - Enter permission password 15
Figure 2-3 Main screen - Logged in 15
Figure 2-4 Edit/run program for the robot - No project opened 16
Figure 2-5 Edit/run program for the robot - Enter project name 17
Figure 2-6 Edit/run program for the robot - Creation of new project completed 18
Figure 2-7 Edit/run program for the robot - Opening a project 18
Figure 2-8 Edit/run program for the robot - Project opening completed 19
Figure 2-9 Edit/run program for the robot - Select input position 20
Figure 2-10 Edit/run program for robot - Select command type 20
Figure 2-11 Edit/run program for robot - Select command 20
Figure 2-12 Edit/run program for robot - Enter command name and other information 21
Figure 2-13 Edit/run program for robot - Input completed 21
Figure 2-14 Point information - Global point operation 22
Figure 2-15 Point information - Specifying Global point operation 24
Figure 2-16 Point information - Local point operation for the test project 24
Figure 2-17 Point information - Specifying Local point operation 26
Figure 2-18 Point information - Setting up original point of user coordinates 27
Figure 2-19 Point information - Setting up X point for the user coordinates (+Xaxis direction) 27
(+Xaxis direction) 27
Figure 2-20 Point information - Setting up XY or + Y point for the user coordinates (+Yaxis direction) 28
Figure 2-21 Tool size Height, Width and Degree 30
Figure 2-22 Point information- Tool coordinates setting 30
Figure 2-23 Point Data - Tool Size Calibration 31
Figure 2-24 Point Data - Tool Size Calibration (Points P1~P8) 31
Figure 2-25 Point Data - Tool Orientation Calibration 32
Figure 2-26 Point Data - Tool Orientation Calibration Setting 32
Figure 2-27 Point information-WorkSpace Setting 34
Figure 2-28 Jog setting 35
Figure2-29 IO monitoring 36
Figure 2-30 System information 36
Figure 2-31 System alarm information 37
Figure 2-32 System alarm information - Alarm information 37
Figure 2-33 Controller information 38
Figure 2-34 System setting - Returning to original point 38
Figure 2-35 System setting - Controller IP 40
Figure 2-35 System setting - Controller IP 40
Figure 2-37 System setting - Setting controller IP 40
Figure 2-38 Servo Setting Servo On/Off 41
Robot language

- DELAY 71
- SetGlobalPoint 71
- CopyPoint 71
- ReadPoint 72
- WritePoint 73
- RobotX 74
- RobotY 74
- RobotZ 74
- RobotRZ 75
- Robothand 75
- AccJ 75
- DecJ 76
- SpdJ 76
- AccL 76
- DecL 76
- SpdL 77
- Accur 77
- RobotServoOn 77
- RobotServoOff 78
- MovJ 78
- MovP 78
- MovPR 79
- MovL 80
- MovLR 80
- MArc 81
- MCircle 82
- Lift 83
- SetUF 83
- ChangeUF 84
- SetTF 84
- ChangeTF 84
- if...end 85
- if...elseif...end 85
- while...do..end 85
- for (type1) 86
- for (type2) 86
- repeat...until 87
- function...end 87
- DI 88
- DO 88
- ReadModbus 89
- WriteModbus 89
- QUIT 90
- PAUSE 90
- SafetyMode 91
- SafetyStatus 91

1. Human machine interface

1.1 Hardware interface

The hardware interface for the teach pendant is mainly divided into touch screen and physical buttons, as shown in Figure 1-1, Figure 1-2, and Figure 1-3.

- Touch-screen functions include: operating status of the robot, connecting status, robot language editing, display/teaching of coordinates information, system-related parameter settings, display of system information, etc.
- Functions of the physical buttons include: JOG operation, auto run, pause/resume, running stop, page-switching button, select/adjustment button, emergency stop (e-stop), and power indicator light for teach pendant.

Physical buttons	Description	Executable page
RUN	Press and hold down this button and the stage two of the threestage for operation button simultaneously for 2 seconds to automatically run the opened project.	Edit/Run
PAUSE RESUME	Press and hold down this button and the stage two of the threestage operation button simultaneously to pause or resume the currently-running project.	Edit/Run
STOP	Press and hold down this button and the stage two of the threestage operation button simultaneously to stop the currentlyrunning project.	Edit/Run

-	Press and hold down this button and the stage two of the threestage operation button simultaneously to shift the axis toward the positive direction.	All pages
-	Press and hold down this button and the stage two of the threestage operation button simultaneously to shift the axis toward the negative direction.	All pages
	Press this button to return to the previous page. It is used on the points page, project directory page, and RL editing page.	Edit/Run, Points
	Press this button to return to the next page. It is used on the points page, project directory page, and RL editing page.	Edit/Run, Points

- Three-stage operation button: Located on the back of the teach pendant (Figure 1-2), it is a safety switch for operating the robot.
- SD Card slot: Located at the bottom of the teach pendant (Figure 1-3), it is used for updating firmware on the teach pendant.

Figure 1-1 Startup screen

Figure 1-2 Back of the teach pendant

Figure 1-3 SD Card slot for the teach pendant

1.2 Touch screen

The touch screen (Figure 1-4) is divided into a Menu Bar on the left, a bar on the top to monitor status of the robotic arm, a bar on the right to monitor Jog information, and a tab screen. Functions of each part are described as follows:

Figure 1-4 Layout of touch screen

- Menu Bar :

Displays tab-switching buttons, including Edit/Run program for the robot, point information (Points), Jog settings (Jog), IO monitoring (DI/O), information display (Info), and Setting

Appearance of Ul buttons	Description
E Main	Press this button to return to the main screen and return to the first page on the Menu Bar. Once done successfully, the button will be highlighted in black.
V	Press this button to turn to the next page on the Menu Bar.
\wedge	Press this button to return to the previous page on the Menu Bar.
$9^{\text {¢ }}$ Eativ	Press this button to switch to the screen to Edit/Run program for the robot. Once done successfully, the button will be highlighted in black.
O porntes	Press this button to switch to the point information screen. Once done successfully, the button will be highlighted in black.
Σ^{2} joc	Press this button to switch to the Jog setting screen. Once done successfully, the button will be highlighted in black.
III	Press this button to switch to the IO monitoring screen. Once done successfully, the button will be highlighted in black.

Press this button to switch to the information display screen. Once done successfully, the button will be highlighted in black.

Press this button to switch to the system settings screen. Once done successfully, the button will be highlighted in black.

Press this button to switch the screen to the Servo ON/OFF screen. Once Done successfully, the button will be highlighted in black.

- Status monitoring bar for the robot:
- ServoOn/Off: Monitors ServoOn/Off status. Or press this button to switch between ServoOn or Off.

Appearance
of Ul buttons

Description

Servo OFF

```
Servo ON
Displays the current robot motor as Servo On. Press this button to switch the motor to Servo Off.
```

Displays the current robot motor as Servo Off. Press this button to switch the motor to Servo On.

- Alarm State: Monitors the current Alarm status for the system.

Appearance
 of Ul buttons

Description

Alarm
State

> | Alarm | It shows that there is an alarm occurred on the system. This button will |
| :--- | :--- |
| State | flash in red. Press this button to switch to the Alarm Info page. |

It shows that no alarm has occurred on the current system. Press this button to switch to the Alarm Info page.

- Authority login: Pressing this button allows logging in with permission password. Logout permission: Press the Logout button on the Main page to enable only monitoring functions on the teach pendant.

Authority

Logout

Description

Pressing this button allows logging in with permission password.

Press this button to logout the permission password and enable only monitoring functions on the teach pendant.

- Name/ID of the project opened: Displays the name and ID of the project opened.
- Robot operating status: Displays status of the current program run by the robot.

Appearance of Ul buttons	Shows that no program is currently run on the robot．
STOP	Shows that a program is currently run on the robot．
RUNNING	Shows that a program is currently pause on the robot．
PAUSE	Shows that the program operation of the current robot will pause after single－line execution．

－Mode display：Displays whether it is currently in T1，T2 or Auto mode

Appearance of Ul buttons	Description		
T1	T1 mode：Jog synthesis rate cannot exceed $250 \mathrm{~mm} / \mathrm{s}$. TP／DROE can be operated and program cannot be run with IO execution under this mode． TP／DROE can be operated and program cannot be run with IO execution under this mode．		
12．	T2 mode：Jog synthesis rate cannot exceed $2000 \mathrm{~mm} / \mathrm{s}$. TP／DROE can be operated and program cannot be run with IO execution under this mode．		Auto mode：TP cannot be operated，DROE can be operated and
:---			
program can be run with IO execution under this mode．			

－TP Operation Mode：Can be set to Enable or Disable

Appearance of Ul buttons	Description
Disable	Disable TP mode：Robot cannot be operated by TP but can be operated by DROE under this mode．Press this icon to switch to Enable TP mode．
Enable	Enable TP mode：Robot can be operated by TP but cannot be operated by DROE under this mode．Press this icon to switch to Disable TP mode．

Jog information bar：Shows current position of the robot，User Frame ID，Tool Frame ID， Cart．Space，or Joint Space．Click the bar to switch between different Jog modes．

按錋外觀	
U0	Displays User Frame ID and Tool Frame ID．U0 means that the current User
T0	Frame ID is 0；T0 means that the current Tool Frame ID is 0.

2.Tab operation and instructions

Joint
Mode
Cart. Mode

User Mode

0.000
mm

0.000

Displays the current Jog mode for the robot as Joint Space.

Displays the current Jog mode for the robot as Joint Space.

Displays the current Jog mode for the robot as User Space.

Current position of X -axis for the robot, unit mm .

Current position of X -axis for the robot, unit mm .

Current position of Z -axis for the robot, unit mm.

Current position of RZ-axis for the robot, unit degree.

2.Tab Operation and instructions

2.1 Main screen (Main)

When the teach pendant finishes starting up, the main screen will first be displayed, as shown in Figure 2-1. This page displays information on the TP version and logs out user permissions to switch the teach pendant into monitoring mode.

Figure 2-1 Main screen - Not logged in

Description

Click the login button \square) and enter the authorization password (Figure 2-2) and the operation screen for that authorization will appear. The Robot operation mode will also be switched to T1((14)) or T2 (12) and TP operation mode will be switched to Enable $\left(\bigodot_{\text {Enabio }}^{\ominus}\right)$, as shown in Figure 2-3. The user can then operate on various functions.

Figure 2-2 Main screen - Enter permission password

Figure 2-3 Main screen - Logged in

2．2 Edit／run program for robot（Edit／Run）

On this screen，projects can be added，opened，and saved．Programs for the robot can be edited and executed．The screen before a project is opened is as shown in Figure 2－4． To edit or execute program for the robot at this time，be sure to create a new project or open an old project．The operation procedures are shown as follows．

Figure 2－4 Edit／run program for the robot－No project opened

Once a project is opened or added，press and hold this button and stage two of the three－stage operation button simultaneously for 2 seconds to automatically run the opened project；once it is successfully run the Robot running status will display as mesens

同 Press and hold this button and the stage two of the three－stage operation button simultaneously to pause to resume the project currently running．Once it has successfully paused，the Robot running status will display as enver Once it has successfully resumed，the Robot running status will display as ．．．．．

Press and hold this button and the stage two of the three－stage operation button simultaneously to stop the project currently running．Once it has successfully stopped，the Robot running status will display as
ress and hold this button and the stage two of the three－stage operation button simultaneously will run a single line of machine process．Every time it is pressed it will execute one line of machine process．Step can be executed when paused or when the project is not running．When Step is executed the Robot running status will display as ，umen

可執行頁面

Edit／Run

Edit／Run

Edit／Run

Edit／Run

2.2.1. Create a new project

The process for creating a new project is shown as follows:

1. Press the New File button
2. Enter the name for the new project.
3. Press OK to create the new project. The screen for completion of project creation will show as Figure 2-5, with the project name and ID displayed on top of the information bar.
4. When the project created, programs can be edited and the Local points for the project can be taught.
5. Once program editing is completed, press Save File, as shown in Figure 2-6. This will save the current project, and the contents saved include the programs and the Local point information.

Figure 2-5 Edit/run program for the robot - Enter project name

Figure 2-6 Edit/run program for the robot - Creation of new project completed

2.2.2 Open old projects

The process for opening an old project is shown as follows:

1. Press the \square Open File button.
2. Press the name of the project file to open, Figure 2-7.
3. Press Open to open the project. The screen for the project opened is as shown in Figure 2-8, with the project name and ID displayed on top of the information bar.
4. Once the project is opened, users can perform program editing.
5. Once program editing is completed, press Save File, as shown in Figure 2-8. This will save the current project, and the saved contents include the programs and the Local point information.

Figure 2-7 Edit/run program for the robot - Opening a project

Figure 2-8 Edit/run program for the robot - Project opening completed

2.2.3 Program editing

Once a project is created or opened, users can start editing the program. Teach pendant provides buttons for convenient editing. The operation procedures are shown as follows.

1. Click above the row number you want to enter on the RL editor, shown as Figure 2-9.
2. Select the command type (Motion, I/O, Logic) on the top of the RL display, shown as Figure 2-10.
3. Select the RL command (MovP, MovL, etc.) at the bottom, shown as Figure 2-11. Press <or $>$ to switch to commands on the next page.
4. Enter RL command related information, shown as Figure 2-12,
A. Press Name to switch the input point name or point index.
B. Press to switch between different types; for example, the maximum speed can be entered.
C. Enter RL command information such as point name.
5. Press Insert or Replace to add a command or replace the command of that row, shown as Figure 2-13.
6. To delete the command, first press the command on its row, and then press Delete to delete the command.

Figure 2-9 Edit/run program for the robot - Select input position

Figure 2-10 Edit/run program for robot - Select command type

Figure 2-11 Edit/run program for robot - Select command

Figure 2-12 Edit/run program for robot - Enter command name and other information

Figure 2-13 Edit/run program for robot - Input completed

2.3 Point information (Points)

The Points page provides three functions, which are: Global point operation, Local point operation, UserFrame, ToolFrame and WorkSpace settings. Clicking the corresponding functions from the pull-down menu allows switching to corresponding operation screens. Figure 2-14 provides the descriptions as follows.

Global	Currently is the Global point operation screen
Local	Currently is the Local point operation screen
User Frame	Currently is the User Frame setting operation screen
Tool Frame	Currently is the Tool Frame setting operation screen
WorkSpace	Currently is the WorkSpace setting operation screen

Figure 2-14 Point information - Global point operation

2.3.1 Global point

Use the pull-down menu to switch to the Global point operation. The point table will display Global points for the controller, as shown in Figure 2-14. This is when teach point can be performed. Use MovP to move to the specified point (Go_P), use MovL to move to the specified point (Go_L), and use Lift to move to the specified point (Go_ Lift). Instructions for the operation are shown as follows:

Instructions for operations

1. First select the target point information, shown as Figure 2-15.
2. Press and hold this button to manually change information on the point.

Switches information displayed for the point and displays information on $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, and RZ.

Switches information displayed for the point and displays information on the hand (H), Tool Frame ID (TF), and User Frame ID (UF).

Physical button. Press this button to return to the previous page for the point table.

Physical button. Press this button to return to the next page for the point table.

Figure 2-15 Point information - Specifying Global point operation

2.3.2 Local point

Only when an old project is opened or a new project is created can the Local point operation be performed for the project. Use the pull-down menu and press Update Local to switch to the Local point operation. The point table will display the Local points for the current project.

Figure 2-16 as an example, operations are being performed on the Local points for the test project. The teach point can be performed. Use MovP to move to the specified point (Go_P), use MovL to move to the specified point (Go_L), use Lift to move to the specified point (Go_Lift), and save information on the Local point to the MS controller (Save). Instructions for the operation are shown as follows:

Figure 2-16 Point information - Local point operation for the test project

Appearance of UI buttons	Instructions for operations
Save	Press this button to save all the Local points for the current project to the MS controller.
Teach	1. First select the target point information, shown as Figure 2-17. 2. Press this button to record the current position of the robot to a selected point.
Go_P	1. First select the target point information, shown as Figure 2-17. 2. Press and hold down this button and the stage two of the three-stage operation button simultaneously. The robot will move to the target position via MovP. Release the button or the three-stage button to stop this motion.
Go_L	1. First select the target point information, shown as Figure 2-17. 2. Press and hold down this button and the stage two of the three-stage operation button simultaneously. The robot will move to the target position via MovL. Release the button or the three-stage button to stop this motion.
Go_Lift	1. First select the target point information, shown as Figure 2-17. 2. Press and hold down this button and the stage two of the three-stage operation button simultaneously. The robot will move to the target position via MovL. Release the button or the three-stage button to stop this motion.
Edit Point	1. First select the target point information, shown as Figure 2-17. 2. Press and hold this button to manually change information on the point.
Add New Point	Press this button to add an entry for the Local point on the last row of the Local point table.
$<$	Switches information displayed for the point and displays information on $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, and RZ.
$>$	Switches information displayed for the point and displays information on the hand (H), Tool Frame ID (TF), and User Frame ID (UF).
	Physical button. Press this button to return to the previous page for the point table.
	Physical button. Press this button to return to the next page for the point table.

Figure 2-17 Point information - Specifying Local point operation

2.3.3 User Frame setting

User coordinates are unfixed coordinates defined by the user. Therefore, this coordinate can be defined at any position, e.g. on the workpiece or workbench.

Three Point Method is the method used to teach user coordinates. It calculates the conversion relationship between the user coordinates and earth coordinates by entering the coordinate values of the original point (Original), the X point along the positive X-axis (+Xaxis), and the Y point along the positive Y-axis (+Yaxis) on the earth coordinates.

【The procedures for setting up user coordinates are provided as follows】

1. Enter User Frame ID. Users can set up 9 sets of user coordinates (1~9). The ID 0 is the earth coordinate for the system and cannot be changed.
2. Set User Frame as Orthogonal/Non-Orthogonal and Inclined/Non-Inclined. Orthogonal/Non-Orthogonal: Sets whether the X-direction and Y-direction of the coordinates is orthogonal.Inclined/Non-Inclined: Sets whether the coordinate plane $X Y$ is inclined.
3. Setting up original point (Original) for the user coordinates.
i. Move the robot to the original point of the user coordinates.
ii. Select Original on the screen (Figure 2-18).
iii. Press Teach to record position of the original point.
4. Setting up the X point for the user coordinates along the positive X-axis.
iv. Move the robot to the X point for the user coordinates along the positive X -axis.
v. \quad Select + Xaxis on the screen (Figure 2-19).
vi. Press Teach to record position of the original point.
5. Setting up the Y point for the user coordinates along the positive Y-axis
vii. Move the robot to the Y point for the user coordinates along the positive Y -axis.
viii. Select XY or +Yaxis on the screen (Figure 2-19).
ix. Press Teach to record position of the original point.
6. Press sel to store to the MS controller user coordinates that have been set.

Figure 2-18 Point information - Setting up original point of user coordinates

Figure 2-19 Point information - Setting up X point for the user coordinates
(+Xaxis direction)

Figure 2-20 Point information - Setting up XY or + Y point for the user coordinates (+Yaxis direction)

【Procedures to read settings of user coordinates are shown as follows:】

1. Enter User Frame ID.
2. Press Get to display the values set for the user coordinates.

2.3.4 ToolFrame Setting

This page is used to perform ToolFrame related settings (Figure 2-22), including Tool Size and Tool Orientation settings. Instructions are as follows:

1. Entering the ToolFrame ID; users can set 9 sets of tool coordinates (1~9). The one with ID 0 is the earth coordinates of the system and cannot be changed.
2. Set Tool Size
A. Direct Input

Enter the Tool Size Height, Width and Angle in the Tool Size field, as shown in Figure 2-21; press when input is complete to save the coordinate data of this tool to the MS controller. Press on to acquire the Tool Size information of the current ID.
B. Calibration
i. Press to switch to the calibration screen as shown in Figure 2-23.
ii. Teach points 2~8, shown as Figure 2-24, press P1~P8 and then press Teach to record this point.
iii. Press Calculate to calculate the Width and Angle of the Tool Size. If the error is too big, press Select to cancel the point change and then press Calculate again to calculate the new Width and Angle of the Tool Size. Repeat this action until the error is within an acceptable range.
iv. Enter the Height; it must be a positive value. This height is the value of teach point (P1~P8) Z.
v. Press Set to set the Height, Width and Angle of the Tool Size. Press Get to acquire the Tool Size information of this ID.
vi. When finished teaching, switch the Jog mode to Tool and set the Tool ID as this ID. When the Z-axis is rotated it can be discovered that it is rotating with the end point of the teach tool.
vii. Press Back to return to the main Tool Setting page, shown as Figure 2-22
3. Set Tool Orientation
A. Press in the Tool Orientation field to enter Tool Orientation Settings (Figure 2-25).
B. Set the Original point, X -axis and Y -axis directions of the Tool, as shown and defined in Figure 2-26.
i. Move the Robot to the Original point and press Teach.
ii. Move the Robot to the pivot point on the +X -axis direction and press Teach.
iii. Move the Robot to the pivot point on the $+Y$-axis direction and press Teach.
C. Press to calculate the related values (Pitch, Roll, Yaw) of Tool Orientation and write the results into the controller. Press to acquire the Tool Orientation information (Pitch, Roll, Yaw) of the current ID.
D. When finished teaching, switch the Jog mode to Tool and set the Tool ID as this ID. The moving direction of XYZ while Jogging will change to the directions taught.
E. Press to return to the main Tool Settings screen, shown as Figure 2-22.

Figure 2-21 Tool size Height, Width and Degree

Figure 2-22 Point information- Tool coordinates setting

Figure 2-23 Point Data - Tool Size Calibration

Figure 2-24 Point Data - Tool Size Calibration (Points P1~P8)

Figure 2-25 Point Data - Tool Orientation Calibration

Figure 2-26 Point Data - Tool Orientation Calibration Setting

2.3.5 Work Space Setting

This page is used to perform WorkSpace related settings, including setting work spaces or non-work spaces. The order of setting Work Space operations is as follows:

1. Enter WorkSpace ID. 10 Sets (1~10) can be set.
2. Select Cylinder or Rectangle as the work space area.
3. Select whether the work space is Restricted Area or Working Area.
4. Enter Cylinder and Rectangle space information
A. Cylinder space teaching method
i. Move the position of the Robot to the top surface center of the cylinder.
ii. Press to teach the center position.
iii. Manually enter the cylinder radius (Radius) and cylinder height (Column Height)
B. Rectangle space teaching method
i. Move the robot to the P0 position, press the P0 field on the screen and then press to teach the position
ii. Move the robot to the PX position, press the PX field on the screen and then press to teach the position
iii. Move the robot to the PY position, press the PY field on the screen and then press to teach the position. The rectangle height must also be set when setting the PY position; the PY point can be higher or lower than the P0 point
5. Press the pull-down menu and set as Enable to enable the work space of this ID; setting it as Disable will disable the work space of this ID.
6. Press to set the work space information of this ID to the MS controller. Press to acquire the work space information of this ID.
7. Enabling work space check function: Press to enable the work space check function; it will switch to when enabled successfully.
8. Disabling work space check function: Press to enable the work space check function; it will switch to when enabled successfully.
9. Press to check the usage status of WorkSpace ID 1~10.

Once the work space check function is enabled, an Alarm (AL82D) will appear when continuous movements exceed the work space; disable the work space check function first and then press AlarmReset to remove the Alarm. To continue using the work space check function, first move the Robot into the work space. An Alarm (AL82D) will appear when Jog use exceeds the work space. Press AlarmReset to remove the Alarm.

Figure 2-27 Point information-WorkSpace Setting

2.4 Jog setting (JOG)

Jog-related settings can be performed on this page, including speed (Speed), distance (Distance), and mode switch (Mode), as shown in Figure 2-28. Descriptions are provided below:

1. Speed setting (Speed):

There is low speed (Low), medium speed (Medium), and high speed (High). Or it can be entered directly. The unit is percentage.
2. Mode setting (Mode):

It is possible to switch between joint mode (Joint), Cartesian mode (Cartesian), and user mode (User).
3. Distance setting (Distance):

Moving distance that can be set includes short (Low), medium (Medium), long (Long), and continuous movement (Continuous). The unit for joint mode (Joint) is PUU, the unit for Cartesian mode (Cartesian) is mm , and the unit for user mode (User) is mm .
4. HandWheel setting

Allows setting HandWheel Jog related parameters; descriptions are as follows:
State:
Switch Hand Wheel operation status (Disable/Enable). When the Hand Wheel operation status is Disable, the Robot cannot be moved with the Hand Wheel. When set as Enable, the Robot can be operated with the Hand Wheel. The switching of Hand Wheel Jog coordinates can be done by switching the Mode between Joint Mode, Cartesian Mode, User Mode and Tool Mode

Amp:

Switches the amplification of the HandWheel (x1 means the robot will move 1um or 1PUU when the HandWheel is rotated by 1 grid)
Amplification that can be set for JointSpace is $x 1 \sim x 1000$, and $x 1 \sim x 100$ for Cart.Space
Jog Axis:
Switches the HandWheel Jog target axis (J1~J4 or X,Y,Z,RZ)
To perform Jog operation on the robot, press and hold down the physical Job button (\square or \square)and the stage two of the three-stage operation button (Figure 1-2) to move the arm. Moving the robot through Jog is available on any page.

Performing HandWheel Jog operations to the robot means rotating the HandWheel (Figure 1-1) and performing the stage two of the three-stage operation (Figure 1-2) simultaneously to move the robot. When the status of HandWheel is Enable, it can move the robot through Jog function on any page.

Figure 2-28 Jog setting

2.5 I/O monitoring (DI/O)

This page monitors the User IO, with the yellow light representing ON and the gray light representing OFF, as shown in Figure 2-29. Press the DO component (1) buttons to perform DO control.

Figure2-29 10 monitoring

2.6 System information (Info)

System alarms can be viewed or reset (Alarm Reset), and information on the version of the control system can be viewed on this page, as shown in Figure 2-30. Press

to switch to the information page for system alarm (Alarm Info); press | Controller |
| :---: |
| Info | to switch to the information page for version of the control system (Controller Info).

Figure 2-30 System information

2.7 System alarm information (Alarm Info)

When an error has occurred on MS, the Alarm status on top of the screen will have a red icon flash to notify the user. The user can press Alarm status directly (Figure 2-31) or switch to the Alarm Info page to find out more about the error message (Figure 2-32).
Once the error is fixed, press Alarm Reset Alam Reset to reset the Alarm. Once done successfully, the Alarm message will be cleared and the Alarm status will change from flashing red to green, as shown in Figure 2-30.

Figure 2-31 System alarm information

Figure 2-32 System alarm information - Alarm information

2.8 Controller information (Controller Info)

This page will display information related to version for the controller, shown as Figure 2-33

Figure 2-33 Controller information

2.9 System setting (Setting)

Original point operations (Home), display of information on controller IP, and settings (Controller IP) can be performed on this page, as shown in Figure 2-34

Figure 2-34 System setting - Returning to original point

2．9．1 Original point operations（Home）

Press ${ }^{n}$ nom to switch to the screen for original point operation（Home）．This page allows return to the original point（GoHome），as shown in Figure 2－34．

Returning to original point（GoHome）
1．All Axes：All axes will return to their original point．Press and hold stage two of the three－stage operation button to execute this command．Once returned to the orig－ inal point，the button will be restored to its original status．
2．Each Axis：Only returns a single axis to its original point．Press and hold stage two of the three－stage operation button to execute this command．Once returned to the original point，the button will be restored to its original status．

2．9．2 Controller IP（Controller IP）

Press ${ }^{\circ}$ to switch to the controller IP（Controller）screen．This page allows acquiring the IP address of the current controller and setting of the controller IP，shown as
Figure 2－35．
【Steps to acquire the current controller IP are as follows：】
1．Press Update to acquire the current controller IP．
2．The acquired IP will be displayed in the Controller IP field，shown as Figure 2－36．

【Steps to set the controller IP are as follows：】
1．Enter the IP and SubnetMask in the Set Controller IP field，shown as Figure 2－37．
2．Press Sel IP to perform the setup and the button will display as mocessing．．．
Once done setting，the buttons will be restored to Sell
3．Acquire the current controller IP to check whether the settings are correct．

Figure 2-35 System setting - Controller IP

Figure 2-35 System setting - Controller IP

Figure 2-37 System setting - Setting controller IP

2.10 System setting - Setting controller IP

This page can be used to Start/Stop the Servo motor, including all-axes Servo On/Off, individual-axis Servo On/Off, shown as Figure 2-38.

1. All-axes Servo On/Off
A. Press scrvo off to execute all-axes Servo On. When Servo On is successful it will change to Sevo on
B. Press sevo on to execute all-axes Servo Off. When Servo Off is successful it will change to \qquad
2. Individual-axis ServoOn/Off, using the J1-axis as example:
A. Press 1 to execute J1-axis Servo On. When Servo On is successful it will change to

1 Axis
B. Press to execute J1-axis Servo Off. When Servo Off is successful it will change to 1 Avs

Figure 2-38 Servo Setting Servo On/Off

3. Alarm

3.1 Definitions of alarms

There are 4 major categories of abnormal alarms, namely the control type, customized type, group type, and axis type, the meanings of which are described as follows:

- Control type: alarms sent out by the controller.
- Customized type: alarms customized by the users through the PLC program written.
- Group type: alarms sent out by a group which is combined randomly from an axis group.
- Axis type: alar ms sent out by individual axis.

The 7-segment display shows the abnormal alarm code in the following way.

Fig 49 Seven-segment display of MS error code

1. Fixed display for abnormal alarm E

2.

Control type (Controller):	C This type of abnormal alarm is currently reserved.
Customized type(User):	U
Group type (Group):	$1-2$ * "?" is used to represent numbers in the List of Abnormal Alarms.
Axial type(Axis):	$1-6$ axis: number 1-6. $7-12$ axis: reserved. $13-18$ axis: English letter D-I * "?" is used to represent numbers and English letters in the List of Abnormal Alarms.

For example:
E 1803 Abnormal alarm code E1.803 is the alarm of Group 1 in the group type.
E IGO] Abnormal alarm code E1803 is the alarm of Axis 1 in the axial type.
Ed803 Abnormal alarm code ED803 is the alarm of Axis 13 in the axial type.
E180 Abnormal alarm code EI803 is the alarm of Axis 18 in the axial type.
3. Codes for Abnormal Alarms

3.2 Index of alarm

3.2.1 Group type

Abnormal Alarm Display	Abnormal Alarm Name	Abnormal Alarm Type		Servo Status	
		ALM	WARN	ON	OFF
E?801	Axis did not return to the origin	\bigcirc			\bigcirc
E?803	Incompatible motion command	\bigcirc			\bigcirc
E?80A	Motion command is not ready	\bigcirc			\bigcirc
E?80B	Unknown motion command	\bigcirc			\bigcirc
E?80C	Error of the motion command in buffer region	\bigcirc			\bigcirc
E?813	Axis error during interpretation of commands	\bigcirc			\bigcirc
E?814	Axis error during implementation of the motion commands	\bigcirc			\bigcirc
E?815	Mono-axis exceeds the software limit	\bigcirc			\bigcirc

Abnormal	Abnormal Alarm Name	Abnormal Alarm Type		Servo Status	
		ALM	WARN	ON	OFF
E?821	Arm gesture is inconsistent	\bigcirc			\bigcirc
E?822	Target position for P2P motion command is out of Robot's operating range	\bigcirc			\bigcirc
E?823	Target position of command for continuous path is out of Robot' s operating range	\bigcirc			\bigcirc
E?824	Spatial movement exceeds the operating range of Robot	\bigcirc			\bigcirc
E?825	P2P movement path exceeds the operating range of Robot	\bigcirc			\bigcirc
E?827	Group does not exist	\bigcirc			\bigcirc
E?829	Error in switching the coordinates	\bigcirc			\bigcirc
E?82A	Error in switching user coordinates	\bigcirc			\bigcirc
E?82B	Error in switching tool coordinates	\bigcirc			\bigcirc
E?832	Loss of internal communication packet	\bigcirc			\bigcirc
E?833	Error in check code for internal communication	\bigcirc			\bigcirc
E?841	The arc command is out of boundary	\bigcirc			\bigcirc
E?842	The arc cannot be formed	\bigcirc			\bigcirc
E?843	Arc mode error	\bigcirc			\bigcirc
E?851	Time out error in transmission of vision parameters followed by conveyor belt	\bigcirc			\bigcirc
E?852	The following speed for conveyor belt exceeds limits	\bigcirc			\bigcirc
E?853	Overtime error in transmission of vision parameters followed by conveyor belt	\bigcirc			\bigcirc
E?861	The jogging speed of the TP hand wheel is too fast.	\bigcirc			\bigcirc
E?862	The TP hand wheel is jogging.	\bigcirc			\bigcirc

[^0]
3.2.2 Axis type

Abnormal Alarm Display	Abnormal Alarm Name	Abnormal Alarm Type		Servo State	
		ALM	WARN	ON	OFF
E?001	Overcurrent	\bigcirc			\bigcirc
E?002	Overvoltage	\bigcirc			\bigcirc
E?003	Low voltage		\bigcirc		\bigcirc
E?004	Motor matching error	\bigcirc			\bigcirc
E?005	Retrogradation error	\bigcirc			\bigcirc
E?006	Overload	\bigcirc			\bigcirc
E?007	Over speed	\bigcirc			\bigcirc
E?009	Error in position control is too large	\bigcirc			\bigcirc
E?011	Encoder abnormal	\bigcirc			\bigcirc
E?012	Calibration abnormal	\bigcirc			\bigcirc
E?013	Emergency stop		\bigcirc		\bigcirc
E?014	Reverse limit abnormal		\bigcirc		\bigcirc
E?015	Direct limit abnormal		\bigcirc	\bigcirc	
E?016	IGBT overheated	\bigcirc			\bigcirc
E?017	Memory abnormal	\bigcirc			\bigcirc
E?018	Detector output abnormal	\bigcirc			\bigcirc
E?019	Serial communication abnormal between controller and drive	\bigcirc			\bigcirc
E?020	Overtime in sSerial communication between controller and drive		\bigcirc	\bigcirc	
E? 022	Power abnormal on the main loop		\bigcirc		\bigcirc
E?023	Advanced overload warning		\bigcirc	\bigcirc	
E?024	Error in Initial magnetic field for the internal encoder	\bigcirc			\bigcirc
E?025	Internal error on the encoder	\bigcirc			\bigcirc
E?026	Error in reliability of internal data for the encoder	\bigcirc			\bigcirc
E?027	Error in internal reset for the encoder	\bigcirc			\bigcirc
E?028	High voltage on the encoder or internal error on the encoder	\bigcirc			\bigcirc
E?029	Gray code error	\bigcirc			\bigcirc
E?030	Motor collision error	\bigcirc			\bigcirc
E?031	Detection on disconnection of the motor power cable	\bigcirc			\bigcirc
E?034	Error in internal communication for the encoder	\bigcirc			\bigcirc
E?035	Encoder temperature exceeded protection limit.	\bigcirc			\bigcirc
E?044	Warning on usage of the drive functions		\bigcirc		

Abnormal Alarm Display	Abnormal Alarm Name	Abnormal Alarm Type		Servo State	
		ALM	WARN	ON	OFF
E?060	Loss of absolute position		\bigcirc		\bigcirc
E?061	Low voltage error on the encoder		\bigcirc	\bigcirc	
E?062	Absolute position laps overflow		\bigcirc	\bigcirc	
E?067	Encoder temperature alarm		\bigcirc	\bigcirc	
E?069	Motor type error	\bigcirc			\bigcirc
E?06A	Loss of absolute position				
E?070	Incomplete encoder processing		\bigcirc		\bigcirc
E?099	EEPROM needs updating	\bigcirc			\bigcirc
E?111	DMCNET packet receiver overflows	\bigcirc			\bigcirc
E?185	DMCNET Bus hardware abnormal	\bigcirc			\bigcirc
E?201	Initial error of DMCNET data	\bigcirc			\bigcirc
E?235	Position command overflows	\bigcirc			\bigcirc
E?245	Positioning overtime	\bigcirc			\bigcirc
E?283	Drive direct limit		\bigcirc	\bigcirc	
E?285	Drive reverse limit		\bigcirc	\bigcirc	
E?289	Position counter overflows	\bigcirc			\bigcirc
E?301	DMCNET synchronizing signal failed	\bigcirc			\bigcirc
E?302	DMCNET synchronizing signal is too fast	\bigcirc			\bigcirc
E?303	DMCNET synchronizing signal overtime	\bigcirc			\bigcirc
E?304	DMCNET IP command invalid	\bigcirc			\bigcirc
E?500	STO function is activated	\bigcirc			\bigcirc
E?501	STO_A lost	\bigcirc			\bigcirc
E?502	STO_B lost	\bigcirc			\bigcirc
E?503	STO_error	\bigcirc			\bigcirc
E? 555	Drive failure	\bigcirc			\bigcirc

Note:
"?"represents the number of "1~6"and alphabet"D ~ |" in the alarm of axis type

3.2.3 Control type

Abnormal Alarm Display	Abnormal Alarm Name	Abnormal Alarm Type		Servo State	
		ALM	WARN	ON	OFF
EC001	PLC timeout	\circ			\circ
EC002	PLC Image load failed	\circ			\circ
EC003	PLC Exception	\circ			\circ
EC004	Motion module failed	\circ			\circ
EC005	Controller failed	\circ			\circ

Abnormal Alarm Display	Abnormal Alarm Name	Abnormal Alarm Type		Servo State	
		ALM	WARN	ON	OFF
EC006	Continuous 30 second write in alarm	\bigcirc			\bigcirc
EC007	DMCNET device setting mismatch	\bigcirc			\bigcirc
EC008	Mechanism parameter file load failed	\bigcirc			\bigcirc
EC009	Robot Type inconsistent	\bigcirc			\bigcirc
E1998	Operation mode not started	\bigcirc			\bigcirc

- Group type:

E?801 Axis did not return to the origin	
Cause	Axis did not return to the origin
Check and Correction	If the axis fails to return to the origin before the coordinates moved, please return the axis to the origin.
Solution	Reset alarm

E?803 Incompatible motion command	
Cause	The motion command does not support over-lapping mode
	Whether commands such as mono-axial P2P(MovJ), multi-axial P2P(MovP, MovPR, MArchP) and spatial commands(MovL, MovLR, MArc, MCircle,
Check and Correction	MArchL) are blended at the same time since these three types of motion commands cannot overlap. Please use other motion commands to replace or avoid command overlapping.
Solution	Reset alarm

E?80A Motion command is not ready

Cause	The motion command is not ready and cannot be interpreted.
Check and Correction	Return to the dealer or original manufacturer for repairing.
Solution	Reset alarm

E?80B Unknown motion command	
Cause	The motion command cannot be identified.
Check and Correction	Return it to the dealer or original manufacturer for repairing.
Solution	Reset alarm

E?80C Error of the motion command in buffer region

Cause	Error in Interpretation of the motion command for cache region.
Check and Correction	Return it to the dealer or original manufacturer for repairing.
Solution	Reset alarm

E?813 Axis error during interpretation of commands

Cause	Axis error during interpretation of commands.
Check and Correction	Please use the original software(DROE) to check whether any abnormality of axis is found and eliminate any abnormality in accordance with the troubleshooting of alarms.
Solution	Reset alarm

E?814 Axis error during implementation of motion commands

Cause	Axis error during implementation of the motion commands.
Check and Correction	Please use the original software(DROE) to check whether any abnormality of axis is found and eliminate any abnormality in accordance with the troubleshooting of alarms.
Solution	Reset alarm

E?815 Mono-axis exceeds the software limit

Cause	Target position of the mono-axis exceeds the software limit.
Check and Correction	Whether target position of the command for each axis is within configured limits of software. If not, please move the arm (manual or Jog) back into the limits of software.
Solution	Reset alarm

E?821 Arm gesture is inconsistent	
Cause	Current arm gesture is inconsistent with gesture at target position.
Check and Correction	1. Continuous path command (MovL, MArc, MCircle, MArchL) does not support movements under hand changes. Check whether the gesture at current position is consistent with that at the target position. If not, please change the gesture at target position or use another motion command. 2. Please check whether this motion path can be ignored. If not, then determine the arm gesture with the controller.
Solution	Reset alarm

E?822 Target position for P2P motion command is out of Robot's operating range

Cause	The target position for issued mono-axial P2P(MovJ), multi-axial P2P (MovP, MovPR, MArchP) is out of the operating range.
Check and Correction	Whether the target position of the motion command for each axis is within the software limits configured by the drive.
Solution	Reset alarm

E?823 Target position of command for continuous path is out of Robot's operating range

Cause	The target position of spatial command issued (MovL, MovLR, MArc, MCircle, MArchL) is out of the operating range.
Check and Correction	Whether the target position of the motion command for each axis is within the software limits configured by the drive.
Solution	Reset alarm

E?824 Spatial movement exceeds the operating range of Robot	
Cause	Spatial command movement exceeds the operating range of Robot.
Check and Correction	Whether the target position of the motion command for each axis is within the configured limits of software.
Solution	Reset alarm

E?825 P2P movement path exceeds the operating range of Robot

Cause	Error of computation for forward kinematics. Path of movements for mono- axial/multi-axial P2P commands exceeds the operating range.			
Check and Correction	1. Whether the setting of software limits is normal. Whether the target position of the motion command for each axis is within the software limits configured by the drive.			
2. Whether path is within the operating range defined by the user.				
3. Whether the machine dimension is correct. (Please contact original				
manufacturer)		,	Solution	Reset alarm
:---	:---			
E?827 Group does not exist				
Cause	The designated group does not exist.			
Check and Correction	Return it to the dealer or original manufacturer for repairing.			
Solution	Reset alarm			

E?829 Error in switching the coordinates

Cause	The coordinates to be switched to do not exist.
Check and Correction	Whether the designated coordinate number is between 0 and 9. If not, please fill in or select the correct coordinate number. Currently, only four coordinates systems of "world", "tool", "user" and "axis" are supported.

Solution	Reset alarm

E?82A Error in switching user coordinates	
Cause	Switching error of the user coordinates
Check and Correction	1. Whether the designated number of user coordinates system has been established or is between 0 and 9. If not, please fill in or select the correct coordinate number. 2. Please use the original software tool to check the coordinates instruction.
Solution	Reset alarm

E?82B Error in switching tool coordinates	
Cause	Switching error of the tool coordinates
Check and Correction	1. Whether the designated number of tool coordinates system has been established or is between 0 and 9. If not, please fill in or select the correct coordinate number. 2. Please use the original software tool to check the coordinates instruction.
Solution	Reset alarm

E?832 Loss of internal communication packet	
Cause	Between the controller and the drive, three continuous losses of the communication packet.
Check and Correction	Return it to the dealer or original manufacturer for repairing.
Solution	Reset alarm

E?833 Error in check code for internal communication	
Cause	Between the controller and the drive, three continuous errors of the communication check code(CRC).
Check and Correction	Return it to the dealer or original manufacturer for repairing.
Solution	Reset alarm
E?841 The arc command is out of boundary	
Cause	The target position of the command issued is out of the operating range.
Check and Correction	Whether the target position of the motion command for each axis is within the configured limits of software.
Solution	Reset alarm

E?842 The arc cannot be formed

Cause
The input conditions cannot form an arc.

Check and Correction	Whether the input conditions for forming an arc is correct, conditions like 3 points are collinear, the radius is 0, or the centre falls on the circumference cannot form a circle. Please reissue command positions according to conditions that can form a circle.
Solution	Reset alarm

E?843 Arc mode error	
Cause	Setting error of arc parameter mode.
Check and Correction	Return it to the dealer or original manufacturer for repairing.
Solution	Reset alarm

E?851 Time out error in transmission of vision parameters followed by conveyor belt

Cause	1. Data transmission error 2. Vision system has not been triggered.
Check and Correction	1. Ensure the vision system has been triggered before the robot starts. 2. Check if the configuration and settings for the vision system are correct.
Solution	Reset alarm

E?852 The following speed for conveyor belt exceeds limits	
Cause	The speed of conveyor belt is too fast.
Check and Correction	Reduce the speed of conveyor belt.
Solution	Reset alarm

E?853 Overtime error in transmission of vision parameters followed by conveyor belt

Cause	Error in setting of number for the user coordinates used in the conveyor belt following application.
Check and Correction	Whether the setting of number for the user coordinates used in the conveyor belt following meets the application specification (it cannot be 0 or larger than 9).
Solution	Reset alarm

E?861 TP handwheel Jog speed too fast	
Cause	TP handwheel Jog speed too fast.
Check and Correction	Please decrease TP handwheel jog speed.
Solution	Alarm reset.

E?862 TP handwheel performing jog	
Cause	TP handwheel performing jog.
Check and Correction	Stop TP handwheel jog first and then perform original movement.
Solution	Alarm reset.

- Axis type:

E?001 Overcurrent	1. Short circuit of the drive output 2. Abnormal motor wiring 3. Abnormal IGBT
Cause	1. Whether wiring between the motor and drive has short-circuited, and if circuited, eliminate the short-circuit condition and prevent exposed wiring. Check and Correction 2.Please refer to the wiring sequence in the instruction Manual and check whether the wiring sequence from the motor to the drive is correct and rewire. If the alarm continues, return it to the dealer or original manufacturer for repairing. Solution Reset alarm

E?002 Overvoltage	Cause
Check and Correction	1. Input voltage for the main loop is too high 2. Hardware failure on the drive
1. Whether the input voltage of the main loop is within the rated voltage value; if not, use the correct voltage components or tandem voltage stabilizer to transform the voltage within the rated voltage value. 2. Whether the input voltage of the main loop is within the rated voltage value; if this error continues, please return the drive back to the dealer or original manufacturer for overhauling.	
Solution	Reset alarm

E?003 Low voltage	
Cause	1. Input voltage for the main loop is too low 2. The main loop has no source of input voltage 3. Power input error
Check and Correction	1. Use the electric meter to check whether the voltage of the main loop is normal. 2. Please refer to the wiring sequence in the Instruction Manual to check whether the wiring for input voltage on the main loop is normal, if not, please rewire. 3. Whether the power system agrees with the definition of the specification, use the correct voltage elements or tandem voltage stabilizer to transform the voltage within the rated voltage value.
Solution	Clear alarm when voltage restores

E?004 Motor matching error	
Cause	1. Position encoder is loose 2. Motor matching error
Check and Correction	Return it to the dealer or original manufacturer for repairing.
Solution	Reconnect power and clear alarm.

E?005 Retrogradation error	
Cause	1. Wrong retrogradation resistance is chosen or no external retrogradation resistance is connected. 2. Parameter setting error
Check and Correction	Return it to the dealer or original manufacturer for repairing.
Solution	Reset alarm

E?006 Overload	
Cause	1. Continuously exceeding the rated load of the drive 2. Error in wiring for the motor and the encoder 3. Motor drive abnormal
Check and Correction	1. Whether the wiring of $\mathrm{U}, \mathrm{V}, \mathrm{W}$ and the encoder is correct; if not, please rewire correctly. 2. Return the motor to the dealer or original manufacturer for repairing.
Solution	Reset alarm

E?007 Over speed	
Cause	Improper setting for parameter P2-34 (warning conditions for over speed)
Check and Correction	Return it to the dealer or original manufacturer for repairing.
Solution	Reset alarm

E?009 Error in position control is too large	
Cause	1. External load is too large
Check and Correction	Please use within the maximum Payload value or adjust the Payload value.
Solution	Reset alarm

E?011 Encoder abnormal

Cause

1. Wiring error for the encoder
2. Encoder is loose or the wiring is poor.
3. Encoder is damaged.

Check and Correction	1. Whether the wiring follows the suggested path in the Instruction Manual. 2. Whether the connection of MotorENC. in the drive and the encoder in the motor position is loose; if loose, reconnect MotorENC. of the drive with a position detector.
Solution	Reconnect power and clear alarm.

E?012 Calibration abnormal
Cause
:---
Solution

E?013 Emergency stop	
Cause	Emergency stop switch is pressed.
Check and Correction	Whether the emergency switch is activated. The emergency stop switch is normally off; if activated unintentionally, please turn it off.
Solution	Reset alarm

E?014 Reverse limit abnormal	
Cause	1. The reverse limit switch is activated 2. The servo system is unstable
Check and Correction	Return it to the dealer or original manufacturer for repairing.
Solution	Reset alarm

E?015 Direct limit abnormal	
Cause	1. The direct limit switch is activated 2. The servo system is unstable
Check and Correction	Return it to the dealer or original manufacturer for repairing.
Solution	Reset alarm

E?016 IGBT overheated	
Cause	1. Continuous overloading on the drive 2. Short circuit upon output from the drive
Check and Correction	1. Check whether the load is too large, and use within the maximum Payload value or adjust the Payload value. 2. Check the drive output wiring to ensure the wiring is correct.
Solution	Reset alarm

	1. Reference data write-in error or parameter error, which occurs at factory reset for parameters due to error in setting of drive types. 2. Drive memory abnormal
Cause	3. ROM data is damaged, if error occurs during power transmission, it is usually due to damage on ROM data or no data available in the ROM. Please return it to the dealer or original manufacturer for repairing.
Check and Correction	Return it to the dealer or original manufacturer for repairing.
Solution	Reset alarm

E?018 Detector output abnormal

Cause	1. Encoder error 2. The output pulse exceeds a permissible range for the hardware.
Check and Correction	Return it to the dealer or original manufacturer for repairing.
Solution	Reset alarm

E?019 Serial communication abnormal between controller and drive	
Cause	1. Improper settings for communication parameters 2. Incorrect communication address 3. Incorrect communication value
Check and Correction	1. Reset to the factory setting 2. Or return it to the dealer or original manufacturer for repairing.
Solution	Reset alarm

E?020 Overtime in serial communication between controller and drive	
Cause	The drive has not received communication command for a long time.
Check and Correction	Check whether the communication cable is loose or broken to ensure correct wiring.
Solution	Reset alarm

E?022 Power abnormal on the main loop	
Cause	Power abnormal on the main loop
Check and Correction	1. Whether RS power cable is loose or non-conductive. 2. Connect the power correctly. If power supply is normal but alarm remains, return the drive to the dealer or manufacturer for repairing.
Solution	Reset alarm

E?023 Advanced overload warning

Cause	Advanced overload warning
Check and Correction	1. Whether the use of overloading. Please refer to the Corrective Action for E?006
Solution	Reset alarm

E?024 Error in Initial magnetic field for the internal encoder	
Cause	Error in initial magnetic field for the encoder (error in the magnetic field positions U, V and W)
Check and Correction	Return it to the dealer or original manufacturer for repairing.
Solution	Reconnect power and clear alarm.

E?025 Internal error on the encoder	
Cause	1. Internal error on the encoder(internal memory error and error in internal counting). 2. The motor rotates due to mechanical inertia or other reasons when it is connected to the power.
Check and Correction	Return it to the dealer or original manufacturer for repairing.
Solution	Reconnect power and clear alarm.

E?026 Error in reliability of internal data for the encoder	
Cause	Encoder error (three continuous errors in internal data)
Check and Correction	Return it to the dealer or original manufacturer for repairing.
Solution	Reconnect power and clear alarm.

E?027 Error in internal reset for the encoder	
Cause	Encoder chip reset
Check and Correction	Return it to the dealer or original manufacturer for repairing.
Solution	Reconnect power and clear alarm.

E?028 High voltage on the encoder or internal error on the encoder	
Cause	1. Over- voltage on battery 2. Internal error of the encoder
Check and Correction	1. Whether the drive has a charging circuit and whether battery installation (voltage >3.8 V) is abnormal. Please use an electric meter to check whether the voltage is higher than 3.8 V.
Solution	Reconnect power and clear alarm.

E?029 Gray code error	
Cause	Error in absolute position of one-loop
Check and Correction	Reconnect the power supply and run the motor to see if alarm reappears, if it remains, return it to the dealer or original manufacturer for repairing.
Solution	Reconnect power and clear alarm.

E?030 Motor collision error

Cause	1. Whether anti-collision function for the motor is activated. 2. Return it to the dealer or original manufacturer for repairing.
Check and Correction	Reconnect the power supply and run the motor to see if alarm reappears, if it remains, replace the encoder.
Solution	Reconnect power and clear alarm.

E?031 Detection on disconnection of the motor power cable

Cause	Disconnection of the motor power cable
Check and Correction	Whether the motor power cables (U, V, W, GND)are disconnected, please connect the cables correctly according to the Instruction Manual and ground them correctly.
Solution	Reconnect power and clear alarm.

E?034 Error in internal communication for the encoder

Cause	Error in internal communication for the encoder
Check and Correction	Whether the battery wiring is loose; if loose, reconnect the battery correctly and turn on the power again
Solution	Reconnect power and clear alarm.

E?044 Warning on usage of the drive functions

Cause	Warning on usage of the drive functions
Check and Correction	Return it to the dealer or original manufacturer for repairing.
Solution	Reconnect power and clear alarm.

E?060 Loss of absolute position

	1. Battery voltage is too low 2. Replace the battery when power of the drive control is turned off
Cause	3. The initialization on coordinates for the absolute position has not been completed after activating the absolute function.
	4. Poor contact or disconnection on the circuit for supply of battery power. 5. Change of the ratio on the electronic gear.

	1. Whether the battery voltage is lower than 2.8 V . 2. Do not change or remove the battery when the drive control power is turned off. 3. Reset the coordinates for the absolute position after completing the initialization on the coordinates for the absolute position and the zero return procedure.				
Check and Correction					
4.(1)Whether the battery installation and wiring is correct. (2) Check the encoder					
wiring (3) Check the wiring between the external battery holder and the drive					
Corrective action: Repeat the zero return procedure		$	$	Solution	Reconnect power and clear alarm.
:---	:---				
E?061 Low voltage on the encoder					
Cause	Battery voltage is too low. Check and Correction 1. Whether the voltage on panel battery is lower than 3.1V (provisional specification). Whether the battery voltage is lower than 3.1V (provisional specification); if lower, please replace the battery with power ON for the drive control.				
Solution	Auto-clear				

E?062 Absolute position laps overflow	
Cause	The stroke is out of range.
Check and Correction	Return it to the dealer or original manufacturer for repairing.
Solution	Reconnect power and clear alarm.

E?067 Encoder temperature alarm

Cause	Temperature of the encoder is too high $\left(85 \sim 100^{\circ} \mathrm{C}\right)$
Check and Correction	Return it to the dealer or original manufacturer for repairing.
Solution	Reconnect power and clear alarm.

E?069 Motor type error

Cause	Activation of absolute function by the incremental motor is not allowed.
Check and Correction	Whether the motor is of incremental motor or absolute encoder.
Solution	Reconnect power and clear alarm.

E?06A Loss of absolute position

Cause
The initialization on coordinates for the absolute position has not been completed after activating the absolute function.

Check and Correction	1. Reset the coordinates for the absolute position after completing the initialization on the coordinates for the absolute position and the zero return procedure. 2. Return it to the dealer or original manufacturer for repairing.
Solution	Reconnect power and clear alarm.

E?070 Incomplete encoder processing	
Cause	Related commands are not completed when the encoder conducts Barcode write-in or relevant actions.
Check and Correction	Return it to the dealer or original manufacturer for repairing.
Solution	Reconnect power and clear alarm.

E?099 EEPROM needs updating

Cause	EEPROM needs updating
Check and Correction	Return it to the dealer or original manufacturer for repairing.
Solution	Reconnect power and clear alarm.
E?111 DMCNET packet receiver overflows	
Cause	More than 2 packets are received within 1ms.
Check and Correction	Return it to the dealer or original manufacturer for repairing.
Solution	Reconnect power and clear alarm.

E?185 DMCNET Bus hardware abnormal	
Cause	DMCNET Bus hardware abnormal or loss of communication packet
Check and Correction	Return it to the dealer or original manufacturer for repairing.
Solution	Reconnect power and clear alarm.

E?201 Initial error of DMCNET data	
Cause	Initial error of DMCNET data
Check and Correction	Return it to the dealer or original manufacturer for repairing.
Solution	Reconnect power and clear alarm.

[^1]| Cause | 1. When temporary register for the feedback position overflows;
 2. When the zero return is triggered, but the zero return procedure is not completed;
 3. When E?060 and E ?062 occur. |
| :--- | :--- |
| Check and Correction | Implement the zero return procedure. |
| Solution | Reconnect power and clear alarm. |

E?245 Positioning overtime	
Cause	Positioning overtime for the position mode .
Check and Correction	Return it to the dealer or original manufacturer for repairing.
Solution	None.

E?283 Drive direct limit

Cause	Exceeding software direct limit.
Check and Correction	Whether the position exceeds the value of P5-09. Please set the limit according to actual conditions; if the position doesn't exceed the limit, please set the maximum:2147483648.
Solution	Reset alarm.

E?285 Drive reverse limit

Cause	Exceeding software reverse limit.
Check and Correction	Whether the position exceeds the value of P5-09. Please set the limit according to actual conditions; if the position doesn't exceed the limit, please set the maximum:-2147483648.
Solution	Reset alarm.

Note: Direct and reverse limits for the software are determined according to the position commands and not the actual feedback positions, because the commands always arrive before the feedback. When the limits play a protective role, the actual position may not have exceeded the limit; therefore, desired effect can be achieved by setting appropriate deceleration time. Please refer to the description of Parameter P5-03

E?289 Position counter overflows	
Cause	Position counter overflows.
Check and Correction	Do not make any modification on the original machine if this alarm occurs; return it back to the original manufacturer directly.
Solution	None.

E?301 DMCNET synchronizing signal failed

Cause	Failure on transmission of synchronizing signal.
Check and Correction	1. Whether the quality of communication line is poor. 2. Return it to the dealer or original manufacturer for repairing.
Solution	Reset alarm

E?302 DMCNET synchronizing signal is too fast

Cause	Synchronizing signal is too fast.
Check and Correction	Return it to the dealer or original manufacturer for repairing.
Solution	Reset alarm

E?303 DMCNET synchronizing signal overtime	
Cause	Synchronizing signal overtime
Check and Correction	Return it to the dealer or original manufacturer for repairing.
Solution	Reset alarm.

E?304 DMCNET IP command invalid	
Cause	The IP mode operation time is too long.
Check and Correction	Return it to the dealer or original manufacturer for repairing.
Solution	Reset alarm.

E?500 STO function is activated	
Cause	Safety function STO is activated.
Check and Correction	Safety function STO is manually activated; please check the activating cause.
Solution	Reset alarm.

E?501 STO_A lost	
Cause	STO_A loses enabling signal or STO_A and STO_B have not been synchronized for more than 1 second.
Check and Correction	Whether the STO_A wiring is correct.
Solution	Reset alarm.

[^2]
SCARA TEACH PENDANT MANUAL

Cause	STO_B loses enabling signal or STO_A and STO_B have not been synchronized for more than 1 second.
Check and Correction	Whether the STO_B wiring is correct.
Solution	Reset alarm.

E?503 STO_error	
Cause	STO self-diagnosis error.
Check and Correction	Whether STO_A and STO_B correctly connected.
Solution	Reset alarm.

E?555 Drive failure

Cause	Drive processor abnormal.
Check and Correction	Do not make any modification on the original machine if this alarm occurs; return it to the original manufacturer directly.
Solution	None.

Note: If abnormal alarm code that isn't listed above, please notify the original manufacturer.

- Control type:

EC001 PLC timeout

Cause	1. PLC program too big, execution time too long. 2. Debug operation.
Check and Correction	1. Confirm PLC Debug is closed.
Solution	Alarm reset.

EC002 PLC Image load failed

Cause	The library version in the PLC Image does not match with the system.
Check and Correction	Check whether the controller parameter P1-01 is 1; if so, version mismatch is caused by firmware update. Please update to the same version of PLC Image.
Solution	Alarm reset.

EC004 Motion module failed

Cause	Abnormal movement module function.
Check and Correction	If this alarm occurred, do not make any modifications to the original machine and send it back to the manufacturer directly.
Solution	None.

EC005 Controller failed

Cause	Abnormal controller function.
Check and Correction	If this alarm occurred, do not make any modifications to the original machine and send it back to the manufacturer directly.
Solution	None.

EC004 Motion module failed

Cause	Abnormal movement module function.
Check and Correction	If this alarm occurred, do not make any modifications to the original machine and send it back to the manufacturer directly.
Solution	None.

EC006 Continuous 30 second write in alarm	
Cause	Write in operation executed for 30 seconds continually without interruptions.
Check and Correction	Check whether the logic of the PLC and RL program or Modbus operation has errors that caused continuous write in. If it occurs repeatedly, it is recommended to remove all external devices and restore original PLC settings and debug step by step.
Solution	Alarm reset.

EC007 DMCNET device setting mismatch	
Cause	DMCNET power on scan results does not match with the maintain power parameter settings.
Check and Correction	Please check the connection status of the DMCNET device and confirm whether the controller parameter P3-31~P3-42 settings matches the current DMCNET external device.
Solution	Alarm reset, to change settings please scan again and save the power maintain parameter.

EC009 Robot Type mismatch	
Cause	The Robot Type set in the parameter does not match the one loaded by the current movement module.

Check and Correction	1. Confirm the firmware version; is it an updated firmware (downgraded or failed) that caused parameters P1-00 and PO-03 to be inconsistent. 2. Reset parameter P1-00, confirm that the current firmware version supports this type, disconnect the power and restart.
Solution	Reconnect the power and clear.

E1998 Operation mode not started

Cause	Operation mode not started, please confirm the reason or System DI4 and DI5 contact are not connected.
Check and Correction	Please conform the System DI4 and DI5 contacts of the operation mode, and restart the controller.
Solution	Alarm reset.

Note: If abnormal alarm code that isn't listed above, please notify the original manufacturer.

4. Robot Language

4.1 Basic Instructions

4.1.1 Robot Language Index

Function

Symbol Description

Operation Symbols	+	Plus
	-	Minus
	*	Times
	1	Divided
	\wedge	Power
	AND	Logical operation : conjunction operation
	OR	Logical operation : or operation
	XOR	Logical operation : nonequivalence operation
	>	Greater than
	>=	Greater than or equal
	<	Less than
	<=	Less than or equal
	=	equal
	~=	Not equal
Function	Symbol	Description
Operation Commands	ABS (x)	Absolute value
	ACOS (x)	Arc cosine (in degree)
	ASIN (x)	Arc sine (in degree)
	ATAN (x)	Arc tangent(in degree)
	ATAN2 (y, x)	Arc tangent of y / x (in degree)
	CEIL(x)	Smallest integer larger than or equal to input value
	$\cos (\mathrm{x})$	Consine (in degree)
	$\mathrm{COSH}(\mathrm{x})$	Hyperbolic consine
	DEG (x)	Angle radians to degrees
	$\operatorname{EXP}(\mathrm{x})$	Calculate the x-th power based on e
	FLOOR(x)	Largest integer smaller than or equal to input value
	FMOD (x, y)	Remainder of the division of x by y
	LOG10(x)	Logarithm of x in the base 10
	LOG (x[,base])	Logarithm of x in the base, default base is natural
	$\operatorname{MAX}(x, \ldots)$	Maximum value among its arguments
	$\operatorname{MIN}(x, \ldots)$	Minimum value among its arguments
	MODF (x)	Return integer part of x and fractional part of x
	POW (x, y)	Return $x^{\wedge} \mathrm{y}$
	RAD (x)	Angle degrees to radians
	$\operatorname{SIN}(\mathrm{x})$	Sine (in degree)
	SINH (x)	Hyperbolic sine
	SQRT (x)	Square root
	TAN (x)	Tangent(in degree)
	TANH (x)	Hyperbolic tangent

Basic Command	DELAY	Delay for a period of time
Point Management Commands	SetGlobalPoint	Save Global point
	CopyPoint	Copy point information
	ReadPoint	Read point information
	WritePoint	Write temporary storage value in the point data
	RobotX	The X-directional coordinate of current Cartesian coordinate
	RobotY	The Y-directional coordinate of current Cartesian coordinate
	RobotZ	The Z-directional coordinate of current Cartesian coordinate
	RobotC	The C-directional coordinate of current Cartesian coordinate
	Robothand	The L/R hand status of current robot
Function	Symbol	Description
Motion Parameters	AccJ	Acceleration, affecting the motion command of MovP, MovJ
	DecJ	Deceleration, affecting the motion command of MovP, MovJ
	SpdJ	Maximum speed, affecting the motion command of MovP, MovJ
	AccL	Acceleration, affecting the motion command of MovL, MArchL, Marc, MCircle
	DecL	Deceleration, affecting the motion command of MovL, MArchL, Marc, MCircle
	SpdL	Maximum speed, affecting the motion command of MovL, MArchL, Marc, MCircle
	Accur	Accuracy of points passed through
Motion Control Commands	RobotServoOn	Activate the robot's servo motor
	RobotServoOff	Stop the robot's servo motor
	MovJ	Control motor axis to rotate to the target position
	MovP	Perform point to point motion via absolute coordinates
	MovPR	Perform point to point motion in relative term
	MovL	Perform rectilinear motion via absolute coordinates
	MovLR	Perform rectilinear motion in relative term
	MArc	Make arc motion via absolute coordinates
	Lift	Use the absolute coordinate to move to the location of the relative point of reference.
	MArc	Make arc motion via absolute coordinates
	MCircle	Make circle motion via absolute coordinates
Coordinate System Commands	SetUF	Set the user coordinate system
	ChangeUF	Switch the user coordinate system
	SetTF	Set the tool coordinate system.
	ChangeTF	Switch the tool coordinate system

Process Control Commands	if...end	If conditional statement (predicate)
	if...elseif...end	If conditional statement (predicate)
	while...do..end	while loop
	for(type1)	for loop
	for(type2)	for loop
	repeat...until	repeat loop
	function...end	User-defined sub-function
IO Operation Commands	DI	Read digital input
	DO	Read or write in digital output
	ReadModbus	Read the value of the memory location
	WriteModbus	Write the value of the memory location
Program Executing Commands	QUIT	Stop executing program
	PAUSE	Suspend the current action
Application function Commands	SafetyMode	This is used for the raster pause function.
	SafetyStatus	This is used for the raster trigger status.

4.1.2 Syntax definition:

Table VI -1 Syntax Precautions

Precautions	Instructions
Case-sensitive	The robot language is case-sensitive, a and A are different
Delimiter statement	Robot language statements can be separated with either semicolon "; ", or blank, e.g. a1=0 a2=1 a3=2 equivalent to a1, a2, a3 = 0, 1, 2
Number of variables > number of values	Make up nil based on the number of variables, e.g. $a 1, a 2, a 3=0,1$, then the value of a3 equals to nil
Number of variables < number of values	Expletory value will be ignored, e.g. $a 1, a 2=0,1,2$, then 2 will be ignored

4.1.3 Variable declaration

- In robot language, no variable becomes Local Variables by particularly having local added, and all of them are Global Variables. Examples of Global Variables and Local Variables are shown as follows.

Example

```
1.a=1
2.if a==1 then
3. Local b=2
4.end
5.if b==2 then -- the value of b here is nil
6. c=1
7.end
```


4.1.4 Reserved Keywords:

- The following keywords should not be used as variables naming declaration. Therefore, special attention should be paid at time of variables naming.
- Robot Languages are case-sensitive, "and" and "AND" are different.
- Users should not use the following names for naming the variables in the form: and, break, do, else, elseif, end, false, for, function, if, in, local, global, nil, not, or, repeat, return, then, true, until, while, P, p, table, boolean, number, string, thread, goto, in, pi, PI, Pi, pl,ON,OFF,On,Off,oN,oFF,on,off.

4.1.5 Point definition P :

- Two methods for indicating points in the form
- The first method: Inside the double quotation marks is the point name
- The second method: point number indication. n: point number

Example

1.MovP ("FirstPoint") - the first indication method, inside the double quotation marks is the point name 2.MovP (1) -the second indication method, point number

4.2 Operation symbols

Table VI-2 Operation Symbols

Symbol	
+	Plus
-	Minus
$*$	Times
$/$	Divided
\wedge	Power
AND	Logical operation : conjunction operation
OR	Logical operation : or operation
XOR	Logical operation : nonequivalence operation

$>$	Greater than
$>=$	Greater than or equal
$<$	Less than
$<=$	Less than or equal
$=$	equal
$\sim=$	Not equal

4.3 Operation commands

Table VI-3 Operation Commands

Command	Description
ABS (x)	Absolute value
ACOS (x)	Arc cosine (in degree)
ASIN (x)	Arc sine (in degree)
ATAN (x)	Arc tangent(in degree)
ATAN2 (y, x)	Arc tangent of y / x (in degree)
CEIL (x)	Smallest integer larger than or equal to input value
$\cos (x)$	Consine (in degree)
$\mathrm{COSH}(\mathrm{x})$	Hyperbolic consine
DEG (x)	Angle radians to degrees
EXP (x)	Calculate the x-th power based on e
FLOOR(x)	Largest integer smaller than or equal to input value
FMOD (x, y)	Remainder of the division of x by y
LOG10 (x)	Logarithm of x in the base 10
LOG (x[,base])	Logarithm of x in the base, default base is natural
$\operatorname{MAX}(x, \ldots)$	Maximum value among its arguments
$\operatorname{MIN}(x, \ldots)$	Minimum value among its arguments
MODF (x)	Return integer part of x and fractional part of x
POW (x, y)	Return $\mathrm{x}^{\wedge} \mathrm{y}$
RAD (x)	Angle degrees to radians
SIN (x)	Sine (in degree)
SINH (x)	Hyperbolic sine
SQRT (x)	Square root
TAN (x)	Tangent(in degree)
TANH (x)	Hyperbolic tangent

4.4 Basic Commands

DELAY

Instruction

Delay for a period of time

Syntax

DELAY (a)

Parameter

a: Time, unit 0.01 s , period of time delay from $0.05 \sim 60$ s

Example

1. DELAY (0.5) --- delay for 0.5 s
2. Time $=5$ - variable time setting is 5
3. DELAY (Time)

4.5 Point Management Commands

SetGlobalPoint

Instruction

Save Global point

Syntax

SetGlobalPoint (a,b,c,d,e,f,g,h)

Parameter

This is the command for setting a point

Table VI-4: Point variable parameter form

Parameter	Name	Description
a	Number	Point number, range 1~1000
b	Name	Point name
c	X	Space coordinate X , floating-point number (unit: mm) can be entered, range 0.001 to 999
d	Y	Space coordinate Y , floating-point number (unit: mm) can be entered, range 0.001 to 999
e	Z	Space coordinate Z, floating-point number (unit: mm) can be entered, range 0.001 to 999
f	C	Space coordinate C, floating-point number (unit: degree) can be entered, range 0.001 to 999
g	HAND	SCARA: 0 or "R" (right hand) 1 or "L" (left hand)
h	UF	User coordinate system, up to 5 sets of coordinate can be entered, 0 is the geodetic coordinate
PT_TF	TF	Tool coordinate system, up to 5 sets of coordinate can be entered, 0 is the geodetic coordinate

CopyPoint

Instruction

Copy point information

Syntax

CopyPoint (a,b)

Parameter

This is the command for setting a point
Table VI-5: CopyPoint parameter form

Parameter	Name	Description
a	Point copied	The point, point number or point name being copied
b	Point copying	The point, point number or point name copying

Example

1. CopyPoint $(1,2)-$ Take the point location of Point 1 as the temporary storage point location and copy the point location information of Point 2 to the point location of Point 1
2. CopyPoint ("P1","P2") - Take the point named P1 as the temporary storage point location and copy the point location information of the point named P2 to the point named P1.

ReadPoint

Instruction

Read point information

Syntax

ReadPoint (a,b)
Parameter
Table VI-6: ReadPoint parameter form

Parameter	Name	Description
a	Point read	
		"X" : X-directional coordinate(Unit:mm)
		"Y" : Y-directional coordinate(Unit:mm)
b	Item to be read	"Z" : Z-directional coordinate (Unit:mm)
		"RZ" : RZ-directional coordinate(Unit: 0.001 degree)
		"H" : L/R hand information (0: right hand; 1: left hand)

Example

1. PostionX=ReadPoint (1001,"X") --Read the X coordinate of point Index 1001
2. Postion $Y=$ ReadPoint (1001,"Y")--Read the Y coordinate of point Index 1001
3. PostionZ=ReadPoint(1001,"Z")--Read the Z coordinate of point Index 1001
4. PostionRZ=ReadPoint (1001,"RZ")--Read the RZ coordinate of point Index 1001
5. PostionH=ReadPoint(1001,"H")--ead the L/R hand informaton of point Index 1001
6. PostionX1=ReadPoint ("P1","X")--Read the X coordinate of point P1
7. PostionY1=ReadPoint ("P1","Y")--Read the Y coordinate of point P1
8. PostionZ1=ReadPoint("P1","Z")--Read the Z coordinate of point P1
9. PostionRZ1=ReadPoint("P1","RZ")--Read the RZ coordinate of point P1
10. PostionH1=ReadPoint("P1","H")--Read the L/R hand information of point P1

WritePoint

Instruction

Write temporary storage value in the point data

Syntax

WritePoint (a,b,c)

Parameter

Table VI-7: WritePoint parameter form

Parameter	Name	Description
a	Point being written	
b	Parameters intended to be written in	"X" : X-directional coordinate (Unit: mm) " Y " : Y-directional coordinate (Unit: mm) "Z" : Z-directional coordinate (Unit: mm) "RZ" : RZ-directional coordinate (Unit:0.001 degree) "H" : L/R hand information (0 or "R": right hand; 1 or "L": left hand)
C	Input value	"X" : X-directional coordinate (Unit: mm); floating-point number can be entered, range 0.001 to 999 " Y " : Y-directional coordinate (Unit: mm); floating-point number can be entered, range 0.001 to 999 "Z" : Z-directional coordinate (Unit: mm); floating-point number can be entered, range 0.001 to 999 "RZ" : RZ-directional coordinate (Unit:0.001 degree); floating-point number can be entered, range 0.001 to 999 "H" : L/R hand information (0 or "R": right hand; 1 or "L": left hand)

Example

1. WritePoint (1001,"X",300) --Input 300mm for the X coordinate of point Index 1001
2. WritePoint (1001,"Y",50)--Input 50mm for the Y coordirnate of point Index 1001
3. WritePoint (1001,"Z",-50) --Input -50mm for the Z coordirnate of point Index 1001
4. WritePoint (1001,"RZ",30) --Input 30° for the RZ coordirnate of point Index 1001
5. WritePoint (1001,"H",0)--Input 0 for the L/R hand information of point Index 1001
6. WritePoint ("P1","X",250)--Input 250 mm for the X coordirnate of point P1
7. WritePoint ("P1","Y",50) --Input 50 mm for the Y coordirnate of point P1
8. WritePoint ("P1","Z",-100) --Input -100mm for the Z coordirnate of point P1
9. WritePoint ("P1","RZ",30) --Input 30° for the RZ coordirnate of point P1
10. WritePoint ("P1","H",1)--Input 1 for the L / R hand information of point $P 1$
11. WritePoint (1002,"X",300.223)--Input 300.223mm for the X coordirnate of point Index 1002
12. WritePoint (1002,"Y",50.671) --Input 50.671mm for the Y coordirnate of point Index 1002
13. WritePoint (1002,"Z",-50.111)--Input -50.111mm for the Z coordirnate of point Index 1002
14. WritePoint (1002,"RZ",30.456)--Input 30.456° for the RZ coordirnate of point Index 1002
15. WritePoint (1002," H ", 0) --Input 0 for the L/R hand information of point Index 1002
16. WritePoint ("P2","X",250.232)--Input 250.232 mm for the X coordirnate of point $P 2$
17. WritePoint ("P2","Y",50.761) --Input 50.761 mm for the Y coordirnate of point P2
18. WritePoint ("P2","Z",-100.105)--Input -100.105mm for the Z coordirnate of point P2
19. WritePoint ("P2","RZ",30.222) --Input 30.222° for the RZ coordirnate of point P2
20. WritePoint ("P2","H",1) --Input 1 for the L/R hand information of point P2

RobotX

Instruction

The X-directional coordinate of current Cartesian coordinate, unit: mm

Syntax

RobotX()

Parameter

This is the command for reading the current position of X coorindate

Example

NowPosition_X=RobotX()

RobotY

Instruction

The Y-directional coordinate of current Cartesian coordinate, unit: mm

Syntax

RobotY ()

Parameter

This is the command for reading the current position of Y coorindate

Example

NowPosition_Y=RobotY ()

Robotz

Instruction

The Z-directional coordinate of current Cartesian coordinate, unit: mm

Syntax

RobotZ()

Parameter

This is the command for reading the current position of Z coorindate

Example

NowPosition_Z=RobotZ()

RobotRZ

Instruction

RZ-direction coordinate value of the current cassette coordinate; when the tool coordinate or the RZ-direction coordinate value of the user coordinate needs to be read, it must switch to the corresponding coordinate status in order for the corresponding coordinate information to be read.

Syntax

RobotRZ()

Parameter

This is the command for reading the current position of RZ coorindate

Example

NowPosition_RZ=RobotRZ()

Robothand

Instruction

The L/R hand status of current robot; value $0=$ right hand, value $1=$ left hand

Syntax

Robothand ()

Parameter

This is the command for reading the L/R hand information of the current position

Example

NowPosition_hand=Robothand()

4.6 Motion Parameters

AccJ

Instruction

Acceleration, affecting the motion command of MovP, MovJ

Syntax

AccJ (a)

Parameter

a: Percentage, range 1~100, cannot enter floating-point number

Example

AccJ (50)

SCARA TEACH PENDANT MANUAL

DecJ

Instruction

Deceleration, affecting the motion command of MovP, MovJ

Syntax

AccJ (a)

Parameter

a: Percentage, range 1~100, cannot enter floating-point number

Example

DecJ (50)

SpdJ

Instruction

Maximum speed, affecting the motion command of MovP, MovJ

Syntax

SpdJ (a)

Parameter

a: Percentage, range 1~100, cannot enter floating-point number

Example

SpdJ(100)

AccL

Instruction

Acceleration, affecting the motion command of MovL, MArchL, Marc, MCircle

Syntax

AccL(a)

Parameter

a: Actual speed $\mathrm{mm} / \mathrm{sec}^{2}$, range 1~25000, cannot enter floating-point number

Example

AccL(5)

DecL

Instruction

Deceleration, affecting the motion command of MovL, MArchL, Marc, MCircle
Syntax
DecL(a)
Parameter
a: Actual speed $\mathrm{mm} / \mathrm{sec}^{2}$, range 1~25000, cannot enter floating-point number

Example

```
DecL(5)
```


SpdL

Instruction

Maximum speed, affecting the motion command of MovL, MArchL, Marc, MCircle

Syntax

SpdL(a)

Parameter

a: Actual speed $\mathrm{mm} / \mathrm{sec}$, range 1~2000, cannot enter floating-point number

Example

SpdL(10)-Line speed is $10 \mathrm{~mm} / \mathrm{sec}$

Accur

Instruction

Accuracy of points passed through
Valid for the motion command without PASS Parameter set

Syntax

Accur (a)

Parameter

a: "STANDARD" (0.1mm)
"HIGH" (0.01 mm)

Example

1. Accur ("HIGH")
2. $\operatorname{MovL}($ " P 1 ")
3. MovL("P2")
4. Accur ("STANDARD")
5. MovL("P3")

4.7 Motion Control Commands

RobotServoOn

Instruction

Activate the robot's servo motor

Syntax

RobotServoOn()
Example
RobotServoOn ()

RobotServoOff

Instruction

Stop the robot's servo motor

Syntax

RobotServoOff()

Example

RobotServoOff()

MovJ

Instruction

Control motor axis to rotate to the target position

Syntax

$\operatorname{MovJ}(\mathrm{a}, \mathrm{b})$
$\operatorname{MovJ}(a, b, c)$
$\operatorname{MovJ}(a, b, c, d, e)$

Parameter

a: Motor shaft number, 1~4
b: In case of input for shaft 1,2 or 4, this is the angle of absolute position, unit: degree
In case of input for shaft 3 , this is the absolute position, unit: mm
In case of input for shaft 5 to 10 (external shafts), this is the absolute position, unit: PUU (Plus User Unit)
c: Maximum speed \% (optional), input range 1~100
d: Acceleration \% (optional), input range 1~100
e: Deceleration \% (optional), input range 1~100

Example

1. $\operatorname{MovJ}(4,180)$
2. $\operatorname{MovJ}(4,180,50)$--shaft 4 moves to the 180 -degree position with speed set as 50%
3. $\operatorname{MovJ}(4,-180,100,10,10)$--shaft 4 moves to the minus 180 -degree position with speed set as 100% and acceleration/deceleration set as 10%

MovP

Instruction

Perform point to point motion via absolute coordinates

Syntax

$\operatorname{MovP}(a, b, c, d, e)$
$\operatorname{MovP}(\mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{e})$
$\operatorname{MovP}(a, c)$
$\operatorname{MovP}(a, b)$
$\operatorname{MovP}(a)$

Parameter

a: End point, point variable
b: PASS (optional), pass the end point

No PASS	PASS
When no PASS command is added, the robot will only move towards P3 after fully reaching P2	When a PASS command is added, the robot will move towards P3 without reaching P2. This function can help the robot to skip over unimportant point locations

c: Maximum speed \% (optional), input range 1~100
d: Acceleration \% (optional), input range 1~100
e: Deceleration \% (optional), input range 1~100

Example

1. $\operatorname{MovP}(1)---m o v e ~ t o ~ t h e ~ f i r s t ~ p o i n t ~ v i a ~ P t P ~$
2. $\operatorname{MovP}(2, " P A S S ")---$ move to the second point via PtP continuous movement
3. $\operatorname{MovP}(3,100,50,50)$--- move to the third point via PtP, with speed set as 100% and acceleration/deceleration set as 50%
4. MovP ("P0", $100,50,50$)-- move to P0 with speed set as 100% and acceleration/deceleration set as 50\%
5. MovP("P1", "PASS",1000,500,500)---move to point 1 via PtP continuous movement, with speed set as $1000 \mathrm{~mm} / \mathrm{s}$ and acceleration/deceleration set as $500 \mathrm{~mm} / \mathrm{s}^{2}$

MovPR

Instruction

Perform point to point motion in relative term

Syntax

$\operatorname{MovPR}(a, b)$
$\operatorname{MovPR}(a, b, c)$

Parameter

a: Moving distance
Positive value: moving in positive direction
Negative value: moving in negative direction
When moving the direction of X, Y, Z coordinates, unit: mm
When moving the direction of C coordinate, unit: degree
b: Moving direction
" X ": direction of X -coordinate
" Y ": direction of Y-coordinate
"Z": direction of Z-coordinate
"C": direction of C-coordinate
c: moving speed \% (optional), input range 1~100

Example

1. $\operatorname{MovPR}(10, " X ")$---Move 10 mm relatively towards positive X direction via PtP
2. $\operatorname{MovPR}(-10, " X ")---M o v e 10 \mathrm{~mm}$ relatively towards negative X direction via PtP
3. $\operatorname{MovPR}(10, " Y ")---M o v e 10 \mathrm{~mm}$ relatively towards positive Y direction via PtP
4. $\operatorname{MovPR}(10, " Z ")$---Move 10 mm relatively towards positive Z direction via PtP
5. $\operatorname{MovPR}(-10, " Z ")---M o v e 10 \mathrm{~mm}$ relatively towards negative Z direction via PtP
6. $\operatorname{MovPR}(10, " C ")$---Move 10° degrees relatively towards positive C direction via PtP
7. $\operatorname{MovPR}(-10, " C ")---M o v e 10$ 。 relatively towards negative C direction via PtP

MovL

Instruction

Perform rectilinear motion via absolute coordinates

Syntax

$\operatorname{MovL}(a, b, c, d, e)$
$\operatorname{MovL}(\mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{e})$
$\operatorname{MovL}(a, c)$
$\operatorname{MovL}(a, b)$
MovL(a)

Parameter

a: End point, point variable
b: PASS (optional), pass the end point
c: Maximum speed $\mathrm{mm} / \mathrm{sec}$ (optional), input range 1~2000
d : Acceleration $\mathrm{mm} / \mathrm{sec}^{2}$ (optional), input range 1~25000
e: Deceleration $\mathrm{mm} / \mathrm{sec}^{2}$ (optional), input range 1~25000

Example

1. MovL("P1")---move to the first point via Line movement
2. $\operatorname{MovL}(1$, "PASS")---move to the first point via Line continuous movement
3. $\operatorname{MovL}(1,1000,500,500)$--- move to point 1 via Line movement, with speed set as $1000 \mathrm{~mm} / \mathrm{s}$ and acceleration/deceleration set as $500 \mathrm{~mm} / \mathrm{s}^{2}$
4. MovL("P1", "PASS",1000,500,500)--- move to point 1 via Line continuous movement, with speed set as $1000 \mathrm{~mm} / \mathrm{s}$ and acceleration/deceleration set as $500 \mathrm{~mm} / \mathrm{s}^{2}$

MovLR

Instruction

Perform rectilinear motion in relative term

Syntax

$\operatorname{MovLR}(a, b)$
$\operatorname{MovLR}(a, b, c)$

Parameter

a: Moving distance
Positive value: moving in positive direction
Negative value: moving in negative direction
When moving the direction of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ coordinates, unit: mm
When moving the direction of C coordinate, unit: degree
b : Moving direction

[^3]
Example

1. $\operatorname{MovLR}(10, " X ")$---Move 10 mm relatively towards positive X direction via Line movement
2. MovLR (-10,"X")---Move 10 mm relatively towards negative X direction via Line movement
3. MovLR (10,"Y") ---Move 10 mm relatively towards positive Y direction via Line movement
4. MovLR(10,"Z")---Move 10 mm relatively towards positive Z direction via Line movement
5. MovLR (-10,"Z") ---Move 10 mm relatively towards negative Z direction via Line movement
6. MovLR(10,"C")---Move 10° relatively towards positive C direction via Line movement
7. MovLR (-10,"C")---Move 10° relatively towards negative C direction via Line movement

MArc

Instruction

Make arc motion via absolute coordinates

Syntax

$\operatorname{MArc}(a, b)$
$\operatorname{MArc}(a, b, c)$
$\operatorname{MArc}(a, b, c, d)$
$\operatorname{MArc}(a, b, c, d, e, f)$

Parameter

a: Passing point, point variable
b: End point, point variable
c: Circle mode, there is BORDER mode
d : Maximum speed mm/sec (optional), input range 1~2000
e: Acceleration $\mathrm{mm} / \mathrm{sec}^{2}$ (optional), input range 1~25000
f: Deceleration $\mathrm{mm} / \mathrm{sec}^{2}$ (optional), input range 1~25000

Example

1. MArc("P1","P2","BORDER")--P1 as the passing point and P2 as the target point, move via continuous mode
2. MArc ("P1","P2","BORDER",100)-- P1 as the passing point and P2 as the target point, move via continuous mode with speed of $100 \mathrm{~mm} / \mathrm{s}$
3. MArc ("P1","P2",BORDER,100,100,100)-- P1 as the passing point and P2 as the target point, move via continuous mode with speed of $100 \mathrm{~mm} / \mathrm{s}$, acceleration $100 \mathrm{~mm} / \mathrm{s}^{2}$ and deceleration $100 \mathrm{~mm} / \mathrm{s}^{2}$

SCARA TEACH PENDANT MANUAL

MCircle

Instruction

Make circle motion via absolute coordinates, with 3 points forming a circle

Syntax

MCircle (a,b)
MCircle (a, b, c)
MCircle (a,b,c,d)
MCircle (a,b,c,d,e,f)
Parameter

a: Point 2, point variable
b: Point 3, point variable
c: Circle mode, there is BORDER mode
d : Maximum speed $\mathrm{mm} / \mathrm{sec}$ (optional), input range 1~2000
e: Acceleration $\mathrm{mm} / \mathrm{sec}^{2}$ (optional), input range 1~25000
f: Deceleration $\mathrm{mm} / \mathrm{sec}^{2}$ (optional), input range 1~25000

Example

1. MCircle("P1","P2","BORDER")-- P1 as the passing point and P2 as the target point, move via continuous mode
2. MCircle("P1","P2","BORDER",100)-- P1 as the passing point and P2 as the target point, move via continuous mode with speed of $100 \mathrm{~mm} / \mathrm{s}$
3. MCircle ("P1","P2","BORDER",100,100,100)-- P1 as the passing point and P2 as the target point, move via continuous mode with speed of $100 \mathrm{~mm} / \mathrm{s}$, acceleration $100 \mathrm{~mm} / \mathrm{s}^{2}$ and deceleration $100 \mathrm{~mm} / \mathrm{s}^{2}$

Lift

Instruction

Use the absolute coordinate to move to the location of the relative point of reference. The parameters entered are the upper-body angle, ascending angle, ascending level and ascending direction.

Syntax

Lift (a,b,c,d)

Parameter

a: Location of the Reference point and point location variable
b: Ascending angle (unit: degree) (1~90)
c: Ascending level (unit: mm)
d: Ascending direction (unit: degree) (-360~360)

Example

Lift ("P0",45, 10,90) - The P0 point is used as the reference point. A point is moved to the location with 45-degree ascending angle referring to the specified reference point, 10 mm ascending level and 90-degree ascending direction.

4.8 Coordinate System Commands

SetUF

Instruction

Set the user coordinate system

Syntax

SetUF (a,b,c,d)

Parameter

World Coordinate

User Coordinate
a: Index of the coordinate system; nine sets of user coordinate are provided for use, input range 1~9
b: The original point of the user coordinate system (Po in diagram)
c: Set the position point in the X -axis direction of the user coordinate system (Px in diagram)
d : Set the position point in the Y -axis direction of the user coordinate system (Py in diagram)

Example

1. SetUF (1,"P0","P1","P2")--Set P0 as the original point of the user coordinate system 1
--Set P1 as the position point in the X-axis direction of the user coordinate system 1
-- Set P2 as the position point in the Y-axis direction of the user coordinate system 1

SCARA TEACH PENDANT MANUAL

ChangeUF

Instruction

Switch the user coordinate system

Syntax

ChangeUF (a)

Parameter

a: Index of the coordinate system; five sets of user coordinate are provided for use, input range 1~5. 0 will switch back to the geodetic coordinate system.

Example

1. ChangeUF (1)--- Switch to user coordinate system 1
2. ChangeUF (0)--- Switch to geodetic coordinate system

SetTF

Instruction

Set the tool coordinate system

Syntax

SetTF (a,b,c,d)

Parameter

a: The coordinate system index provides 9 sets of the tool coordinate system. (1~9)
b: Set the width of the tool
c: Set the height of the tool
d: Set the angle of the tool

Example

SetTF $(1,10,20,30) \quad--$ Set the width of the tool coordinate system 1 to 10 mm
-- Set the length of the tool coordinate system 1 to 20 mm
-- Set the height of the tool coordinate system 1 to 30 mm

ChangetF

Instruction

Switch the tool coordinate system

Syntax

ChangeTF (a)

Parameter

a: Coordinate system number (1~9) provides 9 sets of the tool coordinate system. Enter 0 to return to the world coordinate system.

Example

1. ChangeTF (1) --- Switch to the tool coordinate system 1
2. ChangeTF (0) --- Switch to the world coordinate system

4.9 Process Control Commands

if...end

Instruction

If conditional statement (predicate) : The program imports different program blocks based on the different conditions assumed.
Syntax
if a then
execute program 1
end

Parameter

a: The condition

Example

1. if $\mathrm{DI}(1)==$ "ON" then
2. MovP ("P1")
3. end

if...elseif...end

Instruction

if assertion: The program introduces different program code segments via different assumed situations.

Syntax

if a then
execute program 1
elseif b then
execute program 2
end

Parameter

a: Condition 1
b: Condition 2

Example

1. if $\mathrm{DI}(1)==$ "ON" then
2. MovP ("P1")
3. elseif $\mathrm{DI}(2)==$ "ON" then
4. MovL("P2")
5. end

while...do..end

Instruction

while loop: the program will continuously repeat an execution. To break the loop, use the "break" command.

SCARA TEACH PENDANT MANUAL

Syntax

while a do
loop executing program
end

Parameter

a: Execute if signal is "true"

Example

Calculate accumulation of i until 100, then exit the while loop
$1 . i=1$
2.while true do
3. $\mathrm{i}=\mathrm{i}+1$
4. if $i==100$ then
5. break
6. end
7.end

for (type1)

Instruction

for loop: use the loop command to make the program continuously repeat an execution.

Syntax

for $a=b, c$ do
loop executing program
end

Parameter

a: Loop variable
b: Set the initial value of loop variable
c: Set the final value of the loop variable.
The default updated value is 1 .

Example

Calculate the sum of array a

1. $a=\{5,4,3,2,1\}$
2. $i=1$
3. sum $=0$
4. for $i=1,5$ do
5. sum $=$ sum $+a[i]$
6. end

for (type2)

Instruction

for loop: use the loop command to make the program continuously repeat an execution.

Syntax

for $a=b, c$ do
loop executing program end

Parameter

a: Loop variable
b: Set the initial value of loop variable
c: Set the final value of the loop variable
d: Updated value

Example

Calculate the sum of array a

1. $a=\{5,4,3,2,1\}$
2. $i=1$
3. sum $=0$
4. for $i=1,5$ do
5. $\operatorname{sum}=$ sum $+a[i]$
6. end

repeat...until

Instruction

repeat loop: the program will continuously repeat an execution. Remember to add the predicates where "until" appears.

Syntax

repeat
loop executing program
until a

Parameter

a: The condition

Example

Calculate the sum of array a

1. $a=\{5,4,3,2,1\}$
2. $i=1$
3. sum $=0$
4. repeat
5. sum $=$ sum $+a[i]-$ sum $=15$
6. $i=i+1$
7. until i > \#a -- \#a: get size of array a

function...end

Instruction

User-defined sub-function. Before using the sub-function, the sub-function must be declared first.

Syntax

function a()
execute program
end

Parameter

a: Sub-function name; this must be in English alphabets or numbers, and must not be in word string or other languages.

Example

1.function MyFunc1 ()
2. $\operatorname{MovP}(1)$
3. $\operatorname{MovP}($ "P2")
4. end
5. $\operatorname{MovL}(3)$
6. MyFunc1 ()

4.10 IO Operation Commands

DI

Instruction

Read the status of digital input

Syntax

DI (n)

Parameter

n: Digital input pin number, input range 1~24

Example

1.if $\mathrm{DI}(1)==$ "ON" then
2. MovL ("P1")
3.end

DO

Instruction

Read or write in digital output
Syntax
DO (n,s)
DO (n,s,t)

Parameter

n : Digital output pin number, input range 1~12
s: ON/OFF
t: Delay time

Example

1. if $\mathrm{DO}(1)==$ "ON" then
2. DO (1,"OFF") --Let first DO Off
3. end
4. if $D O$ (1) == "OFF" then
5. DO (1,"ON") --Let first DO On
6. end
7. DO (1,"ON",1) --Let first DO On for one second

ReadModbus

Instruction

It is the command for external communication to read the value of the memory location. The readable memory location is 0×1000 to 0×1 FFF. A total of 4096 words can be used. When data is read in length of double word, the memory location to be read must be even numbers for the reading action to be performed.

Syntax

ReadModbus (a,b)

Parameter

a: Input the Modbus address to be read, input range 0x1000~0x1FFF
b: Input the length of data to be read, input value "W" or "DW"

Example

1. WriteModbus (0x1000,"W",1)
2. readModbus_0x1000=ReadModbus (0x1000,"W")
3. if readModbus_0x1000 $==1$ then
4. WriteModbus (0x1F00,"DW",2)
5. DELAY (0.1)
6. end
7. readModbus_0x1F00=ReadModbus (0x1F00,"DW")

WriteModbus

Instruction

It is the command for external communication to write the value of the memory location. The writable memory location is 0×1000 to 0×1 FFF. A total of 4096 words can be used. When data is written in length of double word, the memory location to be written in must be even numbers for the writing action to be performed.

Syntax

WriteModbus (a,b,c)

Parameter

a: Input the Modbus address to be written in, range $0 \times 1000 \sim 0 \times 1 F F F$
b: Input the length of data to be written in, input value "W" or "DW"
c: Input the value of Modbus address to be written in

Example

1.WriteModbus (0x1000,"W",1)
2.readModbus_0x1000=ReadModbus (0x1000,"W")
3.if readModbus_0x1000 == 1 then
4. WriteModbus (0x1F00,"DW",2)
5. DELAY (0.1)
6.end
7.readModbus_0x1F00=WriteModbus (0x1F00,"DW")

4.11 Program Executing Commands

QUIT

Instruction

Stop executing program
Syntax
QUIT()
Parameter
None

Example

1.IOStatus=DI (1)
2.DELAY (1)
3.if IOStatus~="ON" then
4. QUIT ()
5.end

PAUSE

Instruction

Suspend the current action. To continue with the execution, a start action must be externally triggered (method for starting: write 2 in the memory location 0x0228 by an external program)
Syntax
PAUSE()
Parameter
None

Example

1.IOStatus=DI (1)
2.DELAY (1)
3.if IOStatus~="ON" then
4. PAUSE ()
5.end

4.12 Application Function Commands

SafetyMode

Instruction

This function is used to pause functions

Syntax

SafetyMode(a)

Parameter

a: There are five modes ranging from 1~5; the default status is set as mode 1.
1: Action completed when grating touches; IO stays in current status;
2: Action completed when grating touches; IO returns to OFF status;
3: Disable default function and user manually edits the function at RL;
4: Action slows down and stops when grating touches; IO stays in current status and triggers reset system DI (which is system DI 3), and it continues operating;
5: Action slows down and stops when grating touches; IO returns to OFF status and triggers reset system DI (which is system DI 3), and it continues operating;

Example

1. SafetyMode (4) - Set grating mode as mode 4; action slows down and stops when grating touches; IO stays in current status and triggers reset system DI (which is system DI 3), and it continues operating.
2. MovP (1)
3. SafetyMode(1) - Set grating mode as mode 1; action completed when grating touches; IO stays in current status.
4. $\operatorname{MovP}(2)$

SafetyStatus

Instruction

This is the status used to trigger the grating

Syntax

SafetyStatus()

Parameter

Status read includes 0, 2 and 3
0 : Means the grating was not triggered, which is the normal operating status.
2: Means the grating was triggered when the program was not operating; during this time the motor servo status if OFF.
3: Means the grating was triggered while the program was operating.

Example

1. if SafetyStatus ()$==3$ then
2. PAUSE()
3. end

Smarter. Greener. Together.

Industrial Automation Headquarters

Delta Electronics, Inc.
Taoyuan Technology Center
No.18, Xinglong Rd., Taoyuan Dist.
Taoyuan City 33068, Taiwan
TEL: 886-3-362-6301 / FAX: 886-3-371-6301

Asia

Delta Electronics (Jiangsu) Ltd.
Wujiang Plant 3
1688 Jiangxing East Road,
Wujiang Economic Development Zone
Wujiang City, Jiang Su Province,
People's Republic of China (Post code: 215200)
TEL: 86-512-6340-3008 / FAX: 86-769-6340-7290

Delta Greentech (China) Co., Ltd.
238 Min-Xia Road, Pudong District,
ShangHai, P.R.C.
Post code : 201209
TEL: 86-21-58635678 / FAX: 86-21-58630003
Delta Electronics (Japan), Inc.
Tokyo Office
2-1-14 Minato-ku Shibadaimon,
Tokyo 105-0012, Japan
TEL: 81-3-5733-1111 / FAX: 81-3-5733-1211

Delta Electronics (Korea), Inc.
1511, Byucksan Digital Valley 6-cha, Gasan-dong,
Geumcheon-gu, Seoul, Korea, 153-704
TEL: 82-2-515-5303 / FAX: 82-2-515-5302
Delta Electronics Int'I(S) Pte Ltd
4 Kaki Bukit Ave 1, \#05-05, Singapore 417939
TEL: 65-6747-5155 / FAX: 65-6744-9228
Delta Electronics (India) Pvt. Ltd.
Plot No 43 Sector 35, HSIIDC
Gurgaon, PIN 122001, Haryana, India
TEL : 91-124-4874900 / FAX : 91-124-4874945

Americas

Delta Products Corporation (USA)
Raleigh Office
P.O. Box 12173,5101 Davis Drive,

Research Triangle Park, NC 27709, U.S.A.
TEL: 1-919-767-3800 / FAX: 1-919-767-8080
Delta Greentech (Brasil) S.A
Sao Paulo Office
Rua Itapeva, 26-3ºndar Edificio Itapeva One-Bela Vista
01332-000-São Paulo-SP-Brazil
TEL: +55 11 3568-3855 / FAX: +55 11 3568-3865

Europe

Delta Electronics (Netherlands) B.V.
Eindhoven Office
De Witbogt 20, 5652 AG Eindhoven, The Netherlands
TEL: +31 (0)40-8003800 / FAX: +31 (0)40-8003898

[^0]: Note:
 If there's other alarm code appearing, please contact the technique team or agent directly for further support.
 "?"represents the number of "1. ~ 2." in the alarm of group type.

[^1]: E?235 Position command overflows

[^2]: E?502 STO_B lost

[^3]: "X": direction of X-coordinate
 " Y ": direction of Y -coordinate
 "Z": direction of Z-coordinate
 "C": direction of C-coordinate
 c: moving speed \% (optional)

